
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

412-268-5090

W911NF-09-1-0273

56390-CS.333

Technical Report

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

Security-sensitive applications that execute untrusted code often check the code’s integrity by comparing its syntax
to a known good value or sandbox the code to contain its effects. System M is a new program logic for reasoning
about such security-sensitive applications. System M extends Hoare Type Theory (HTT) to trace safety properties
and, additionally, contains two new reasoning principles. First, its type system internalizes logical equality,
facilitating reasoning about applications that check code integrity. Second, a confinement rule assigns an effect type
to a computation based solely on knowledge of the computation’s sandbox. We prove the sound- ness of System M

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

Approved for public release; distribution is unlimited.

System M: A Program Logic for Code Sandboxing and
Identification

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

program logic, traces, adversarial code, security

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Pradeep Khosla

Limin Jia, , Shayak Sen, , Deepak Garg, , Anupam Datta

611102

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213 -3815

ABSTRACT

System M: A Program Logic for Code Sandboxing and Identification

Report Title

Security-sensitive applications that execute untrusted code often check the code’s integrity by comparing its syntax to
a known good value or sandbox the code to contain its effects. System M is a new program logic for reasoning about
such security-sensitive applications. System M extends Hoare Type Theory (HTT) to trace safety properties and,
additionally, contains two new reasoning principles. First, its type system internalizes logical equality, facilitating
reasoning about applications that check code integrity. Second, a confinement rule assigns an effect type to a
computation based solely on knowledge of the computation’s sandbox. We prove the sound- ness of System M
relative to a step-indexed trace-based semantic model. We illustrate both new reasoning principles of System M by
verifying the main integrity property of the design of Memoir, a previously proposed trusted computing system for
ensuring state continuity of isolated security-sensitive applications.

System M: A Program Logic for
Code Sandboxing and Identification

Limin Jia
ECE & INI

Carnegie Mellon University
liminjia@cmu.edu

Shayak Sen
CS

Carnegie Mellon University
shayaks@cs.cmu.edu

Deepak Garg
Max Planck Institute for

Software Systems
dg@mpi-sws.org

Anupam Datta
CS & ECE

Carnegie Mellon University
danupam@cmu.edu

Abstract
Security-sensitive applications that execute untrusted code often
check the code’s integrity by comparing its syntax to a known good
value or sandbox the code to contain its effects. System M is a new
program logic for reasoning about such security-sensitive applica-
tions. System M extends Hoare Type Theory (HTT) to trace safety
properties and, additionally, contains two new reasoning principles.
First, its type system internalizes logical equality, facilitating rea-
soning about applications that check code integrity. Second, a con-
finement rule assigns an effect type to a computation based solely
on knowledge of the computation’s sandbox. We prove the sound-
ness of System M relative to a step-indexed trace-based semantic
model. We illustrate both new reasoning principles of System M
by verifying the main integrity property of the design of Memoir,
a previously proposed trusted computing system for ensuring state
continuity of isolated security-sensitive applications.

Keywords Program logic, traces, adversarial code, security

1. Introduction
Software systems, such as Web browsers, smartphone platforms,
and extensible operating systems and hypervisors, are designed to
provide subtle security properties in the presence of adversaries
who can supply code, which is then executed with the privileges of
the trusted system. For example, webpages routinely execute third-
party JavaScript with full access to their content; smartphones ex-
ecute apps from open app stores, often with very lax sandboxes;
operating system kernels include untrusted (and often buggy) de-
vice drivers; and trusted computing platforms load programs from
disk and only later verify loaded programs using the Trusted Plat-
form Module (TPM) [32]. Despite executing potentially adversar-

[Copyright notice will appear here once ’preprint’ option is removed.]

ial code, all these systems have security-related goals, often safety
properties over traces [18]. For example, a hypervisor must ensure
that an untrusted guest operating system running on top of it can-
not modify the hypervisor’s page table, a webpage must ensure that
an embedded untrusted advertisement cannot access a user’s pass-
word, and trusted computing mechanisms must enable a remote
party to check that an expected software stack was loaded in the
expected order on an untrusted server.

Secure execution of untrusted code in trusted contexts rely on
two common mechanisms. First, untrusted code is often run inside
a sandbox that confines its interaction with key system resources to
a restricted set of interfaces. This practice is seen in Web browsers,
hypervisors, and other security-critical systems. Second, code iden-
tification mechanisms are used to infer that an untrusted piece of
code is in fact syntactically equal to a known piece of code. These
mechanisms include distribution of signed code, and trusted com-
puting mechanisms [32] that leverage hardware support to enable
remote parties to check the identity of code on an untrusted com-
puter. Motivated by these systems, we present a program logic,
called System M, for modeling and proving safety properties of
systems that securely execute adversary-supplied code via sand-
boxing and code identification.

System M’s design is inspired by Hoare Type Theory (HTT) [21–
23]. Like HTT, a monad separates computations with side-effects
from pure expressions, and a monadic type both specifies the return
type of a computation and includes a postcondition that specifies
the computation’s side-effects. The postcondition of a computa-
tion type in System M uses predicates over the entire trace of the
computation. This is motivated by our desire to verify safety prop-
erties [18], which are, by definition, predicates on traces. Further,
the postcondition contains not one but two predicates on traces.
One predicate, the standard partial correctness assertion, holds if
the computation completes. The other, called the invariant asser-
tion, holds at all intermediate points of the computation, even if
the computation is stuck or divergent. The invariant assertion is
directly used to represent safety properties.

To this basic infrastructure, we add two novel reasoning prin-
ciples that internalize the rationale behind commonly used mech-
anisms for ensuring secure execution of adversary-supplied code:
code identification and sandboxing. These rules derive effects of
untyped code potentially provided by an adversary and, hence, en-

1 2014/7/22

able the typing derivation of the trusted code to include as sub-
derivations, the reasoning of effects of the adversarial code.

The first principle, a rule called EQ, ascribes the type of a pro-
gram to another program e′: if e is syntactically equal to e′ and
e : τ , then e′ : τ . This rule is useful for typing programs read from
adversary-modifiable memory locations when separate reasoning
can establish that the value stored in the location is, in fact, syntacti-
cally equal to some known expression with a known type. Depend-
ing on the application, such reasoning may be based in a dynamic
check (e.g., in secure boot [27] the hash of a textual reification of
a program read from adversary-accessible memory is compared to
the corresponding hash of a known program before executing the
read program) or it may be based in a logical proof showing the
inability of the adversary to write the location in question (e.g.,
showing that guests cannot write to hypervisor memory).

Our second reasoning principle, manifest in a rule called CON-
FINE, allows us to type partially specified adversary-supplied code
from knowledge of the sandbox in which the code will execute. The
intuition behind this rule is that if all side-effecting interfaces avail-
able to a computation maintain a certain invariant on the shared
state, then that computation cannot violate that invariant, irrespec-
tive of its actual code. The CONFINE rule generalizes prior work of
Garg et al. on reasoning about interface-confined adversarial code
in a first-order language [14]. The main difference from Garg et
al. [14] is that in this paper trusted interfaces can receive and exe-
cute code, in addition to data, from the adversary and other trusted
components. Our use of the CONFINE rule stresses our view that
assumptions made about adversarial code should be minimized. In
contrast, a lot of work, e.g., proof-carrying code [25], requires that
adversarial code be checked in a rich type system prior to execu-
tion, which eliminates the need for a rule like CONFINE. Section 3
explains intuitions behind these two principles in more detail.

We show soundness of System M relative to a step-indexed
model [2] built over syntactic traces. As in some prior work [8–
10, 14], our semantics of assertions and postconditions account
for interleaving actions from concurrently executing programs in-
cluding adversarial programs and, hence, our soundness theorem
implies that all verified properties hold in the presence of adver-
saries, which is a variant of robust safety, proposed by Gordon et
al. [15]. System M supports compositional proofs—security proofs
of sequentially composed programs are built from proofs of their
sub-programs. System M also admits concurrent composition—
properties proved of a program hold when that program executes
concurrently with other, even adversarial, programs.

System M is the first program logic that allows proofs of safety
for programs that execute adversary-supplied code with adequate
precautions, but does not force the adversarial code to be com-
pletely available for typing. Other frameworks like Bhargavan et
al’s contextual theorems [4] for F7 achieve expressiveness similar
to the CONFINE rule for a slightly limited selection of trace proper-
ties. (We compare to related work in Section 7.) Our step-indexed
model of Hoare types is also novel; although our exclusion of pre-
conditions, our use of call-by-name β-reduction, and the inclusion
of adversary-supplied code make the model nonstandard.

System M can be used to model and verify protocols as well
as system designs. We demonstrate the reasoning principles of
System M by verifying the state continuity property of the design
of Memoir [28], a previously proposed trusted computing system.
For reasons of space, we elide proofs, some technical details and
several typing rules from this paper. These are presented in the
accompanying technical appendix.

2. Term Language and Operational Semantics
We summarize System M’s term syntax in Figure 1. Pure expres-
sions, denoted e, are distinguished from effectful computations,

Base values bv ::= tt | ff | ι | ` | n
Expressions e ::= x | bv | λx.e | ΛX.e

| e1 e2 | e · | comp(c)
Actions a ::= A | a e | a ·
Computations c ::= act(a) | ret(e) | fix f(x).c | c e

| letc(c1, x.c2) | lete(e1, x.c2)
| c1; c2 | e1; c2 | if e then c1 else c2

Figure 1. Term Syntax

denoted c. An expression can be a variable, a constant, a func-
tion, a polymorphic function, a function application, a polymor-
phic function instantiation, or a suspended computation. Constants
can be Booleans (tt, ff), natural numbers (n ∈ N), thread iden-
tifiers (ι ∈ I), and memory locations (` ∈ L). We use · as the
place holder for the type in a polymorphic function instantiation.
Suspended computations comp(c) constitute a monad with return
ret(e) and bind lete(e1, x.c2).

System M is parametrized over a set of action symbolsA, which
are instantiated with concrete actions based on specific application
domains. For instance, A may be instantiated with memory opera-
tions such as read and write. An action, denoted a, is the applica-
tion of an action symbol A to expression arguments.

A basic computation is either an atomic action (act(a)) or
ret(e) that returns the pure expression e immediately. fix f(x).c
is a fixpoint operator. f , which represents a suspended fixpoint
computation, may appear free in the body c. Computation (c e)
is the application of a fixpoint computation to its argument.
letc(c1, x.c2) denotes the sequential composition of c1 and c2,
while lete(e1, x.c2) is the sequential composition of the sus-
pended computation to which e1 reduces and c2. In both cases,
the expression returned by the first computation is bound to x,
which may occur free in c2. We sometimes use the alternate syntax
x ← c1; c2 and let x = e1; c2. When the expression returned by
the first computation is not used c2, we write c1; c2 and e1; c2.

The operational semantics of System M are small-step and
based on interleaving of concurrent threads.

Stack K ::= [] | x.c :: K
Thread T ::= 〈ι;K; c〉 | 〈ι;K; e〉 | 〈ι; stuck〉
Configuration C ::= σ . T1, . . . , Tn

A thread T is a unit of sequential execution. A non-stuck thread
is a triple 〈ι;K; c〉 or 〈ι;K; e〉, where ι is a unique identifier of
that thread (drawn from a set I of such identifiers), K is the
execution (continuation) stack, and c and e are the computation and
expression currently being evaluated. A thread permanently enters
a stuck state, denoted 〈ι; stuck〉, after performing an illegal action,
such as accessing an unallocated memory location. An execution
stack is a list of frames of the form x.c recording the return points
of sequencing statements in the enclosing context. In a frame x.c,
x binds the return expression of the computation preceding c. A
configuration of the system is a shared state σ and a set of all
threads. σ is application-specific; for the rest of this paper, we
assume that it is a standard heap mapping pointers to expressions,
but this choice is not essential. For example, in modeling network
protocols, the heap could be replaced by the set of undelivered
(pending) messages on the network.

For pure expressions, we use call-by-name β-reduction →β .
This choice simplifies the operational semantics and the soundness
proofs, as explained in Sections 6. We elide the standard rules for
→β . The small-step transitions for threads and system configura-
tions are shown in Figure 2. The relation σ . T ↪→ σ′ . T ′ defines
a small-step transition of a single thread. C −→ C′ denotes a small-
step transition for configuration C; it results from the reduction of
any single thread in C.

2 2014/7/22

σ . T ↪→ σ′ . T ′

next(σ, a) = (σ′, e) e 6= stuck

σ . 〈ι;x.c :: K; act(a)〉 ↪→ σ′ . 〈ι;K; c[e/x]〉
R-ACTS

next(σ, a) = (σ′, stuck)

σ . 〈ι;x.c :: K; act(a)〉 ↪→ σ′ . 〈ι; stuck〉
R-ACTF

σ . 〈ι; stuck〉 ↪→ σ . 〈ι; stuck〉 R-STUCK

σ . 〈ι;x.c :: K; ret(e)〉 ↪→ σ . 〈ι;K; c[e/x]〉 R-RET

e→β e
′

σ . 〈ι;K; e〉 ↪→β σ . 〈ι;K; e′〉
R-SEQE2

σ . 〈ι;x.c2 :: K; comp(c1)〉 ↪→ σ . 〈ι;x.c2 :: K; c1〉
R-SEQE3

σ . 〈ι;K; (fixf(x).c) e〉
↪→ σ . 〈ι;K; c[λz.comp(fix(f(x).c) z)/f][e/x]〉

R-FIX

Figure 2. Selected small-step reduction semantics of configura-
tions

The rules for σ . T ↪→ σ′ . T ′ are mostly straightforward.
The rules for evaluating an atomic action (R-ACTS and R-ACTF)
rely on a function next that takes the current store σ and an action
a, and returns a new store and an expression, which are the result
of the action. If the action is illegal, then next(σ, a) = (σ′, stuck).
If the action returns a non-stuck expression e (rule R-ACTS), then
the top frame (x.c) is popped off the stack, and c[e/x] becomes the
current computation of the thread. If next returns stuck (rule R-
ACTF), then the thread enters the stuck state and permanently re-
mains there. When a sequencing statement lete(e1, x.c2) is evalu-
ated, the frame x.c2 is pushed onto the stack, and e1 is first reduced
to a suspended computation comp(c1); then c1 is evaluated. When
a fixpoint (fixf(x).c); e is evaluated, f is substituted with a func-
tion whose body is a suspension of fixf(x).c.

Any finite execution of a configuration results in a trace T ,
defined as a finite sequence of reductions. With each reduction we
associate a time point u, also called a (logical) time point. These
time points on the trace are monotonically increasing. A trace
annotated with time is written

u0−→ C0
u1−→ C1 . . .

un−−→ Cn, where
ui ≤ ui+1. We follow the convention that the reduction from Ci to
Ci+1 happens at time ui+1 and that its effects occur immediately.
Thus the state at time ui is the state in Ci.

3. Motivating Application
We briefly review Memoir [28], our main application, and highlight
the challenges in analyzing Memoir to motivate the novel typing
rules for deriving properties of adverary-supplied code using code
identification and sandboxing.

3.1 Overview of Memoir
Memoir provides state-integrity guarantees for stateful security-
sensitive services invoked by potentially malicious parties. Such
services often rely on untrusted storage to store their persistent
state. An example of such a service is a password manager that re-
sponds with a stored password when it receives a request containing
a URL and a username. The service would want to ensure secrecy
and integrity of its state; in this case, the set of stored passwords.
Simply encrypting and signing the service’s state cannot prevent
the attacker from invoking the service with a valid but old state, and

1 runmodule(srvc, snap, req ,Nloc) =
2 · · ·
3 (skey, freshness tag)← act(NVRAMread Nloc);
4 service state← check decrypt snapshot (snap);
5 · · ·
6 (state ′, resp)

← (srvc ExtendPCR ResetPCR · · ·) (state, req);
7 · · ·

Figure 3. Snippet of invokation code

consequently mounting service rollback attacks. For the password
manager service, this attack could cause the service to respond with
old (possibly compromised) passwords. Memoir solves this prob-
lem by using the TPM to provide state integrity guarantees. Memoir
relies on the following TPM features:

• Platform configuration registers (PCRs) contain 20-byte hashes
known as measurements that summarize the current configura-
tion of the system. The value they contain can only be updated
in two ways: (1) a reset operation which sets the value of the
PCR to a fixed default value; (2) an extend operation which
takes as argument a value v and updates the value of the PCR
to the hash of the concatenation of its current value with v.
• Late launch is a command that can be used to securely load

a program. It extends the hash of the textual reification of the
program into a special PCR (PCR17). Combined with the guar-
antees provided by a PCR, late launch provides a mechanism
for precise code identification.
• Non-volatile RAM (NVRAM) provides persistent storage that

allows access control based on PCR measurements. Specifi-
cally, permissions on NVRAM locations can be tied to a PCR
p and value v such that the location can only be read when the
value contained in p is v.

Memoir has two phases: service initialization and service in-
vokation. During initialization, the Memoir module is assigned an
NVRAM block. It is also given a service to protect. The module
generates a new symmetric key that is used throughout the lifetime
of the service. It sets the permissions on accesses to the NVRAM
block to be tied to the hash stored in PCR 17, which contains the
hash of the code for Memoir and the service. To prevent rollback
attacks, it uses a freshness tag which is a chain of hashes of all
the requests received so far. The secret key and an initial freshness
tag are stored in the designated NVRAM location. The service then
runs for the first time to generate an initial state, which along with
the freshness tag is encrypted with the secret key and stored to disk.
This encryption of the service’s state along with the freshness tag
is called a snapshot.

After initialization, a service can be invoked by providing Mem-
oir with an NVRAM block, a piece of service code, and a snap-
shot. In Figure 3, we show a snippet of the Memoir service in-
vokation code. Memoir retrieves the key and freshness tag from
the NVRAM. Memoir then decrypts the snapshot and verifies that
the freshness tag in the provided state matches the one stored in
NVRAM. If the verification succeeds, Memoir computes a new
freshness tag and updates the NVRAM. Next, it executes the ser-
vice to generate a new state and a response. The new snapshot cor-
responding to the new state and freshness tag is stored to disk.

The security property we prove about Memoir is that the service
can only be invoked on the state generated by the last completed
instance of the service. The proof of security for Memoir requires
reasoning about the effects the service, which is provided by poten-
tially malicious parties.

3 2014/7/22

To derive properties of the runmodule code shown above one
needs to assign a type to srvc, which is provided by an adversary.
The service srvc, run on line 6, is a function that contains no
free actions. However, srvc takes as arguments interface functions
corresponding to every atomic action in our model. Shown above
are ExtendPCR and ResetPCR which are simply wrappers for
the corresponding atomic actions.

For example, the proof requires deriving the following two
invariant properties about srvc:
1. It does not change the value of the PCR to a state that allows

the adversary to later read the NVRAM.
2. It does not leak the secret key.

The first invariant is derived using the fact that the service is
confined to the interface exposed by the TPM. The second invariant
is derived in three steps: (i) prove that srvc is syntactically equal
to the initial service; (ii) assume that the initial service does not
leak the secret key; and (iii) hence infer that srvc does not leak the
secret key. We next describe System M’s typing rules that enable
such reasoning.

3.2 Typing Adversary Supplied Code
Reasoning about effects of confinement In analyzing programs
that execute adversary-supplied code, one often encounters a par-
tially trusted program, whose code is unknown, but which is known
or assumed to be confined to the use of a specific set of interfaces
to perform actions on shared state. In our Memoir example, every
program on the machine is confined to the interface provided by
the TPM. Using just this confinement information, we can some-
times deduce a useful effect-type for the partially trusted program.
Suppose c is a closed computation, which syntactically does not
contain any actions and can invoke as subprocedures the compu-
tations c1, . . . , cn only (i.e., c is confined to c1, . . . , cn). If all ac-
tions performed by c1, . . . , cn satisfy a predicateϕ, then the actions
performed by c must also satisfy ϕ, irrespective of the code of c.
Hence, we can statically specify the effects of c, without knowing
its code, but knowing the effects of c1, . . . , cn.

We formalize this intuition in a typing rule called CONFINE. To
explain this rule, we introduce some notation. Let τ denote types
in System M that include postconditions for computations and,
specifically, let cmp(τ, ϕ) denote the monadic type of computations
that return a value of type τ and whose actions satisfy the predicate
ϕ. (The notation cmp(τ, ϕ) is simpler than our actual computation
types, but it suffices for the explanation here.)

As an illustration of our CONFINE rule, consider any closed ex-
pression e. Assume that e does not contain any primitive actions.
Then, we claim that for any ϕ, e has the type cmp(bool, ϕ) →
cmp(bool, ϕ). To understand this claim, assume that ϕ is the prop-
erty “the action is not a write to memory”. To show that e :
cmp(bool, ϕ) → cmp(bool, ϕ), we must show that for any v :
cmp(bool, ϕ), e v : cmp(bool, ϕ). Hence, we must show that the
actions performed by the computation, say c, that e v evaluates to
do not include write. This can be argued easily: Because e is closed
and does not contain any actions, the only way this computation
c could write is by invoking the computation v. However, because
v : cmp(bool, ϕ), v does not write. Hence, e v : cmp(bool, ϕ).

In fact, we can assign e any type, including higher-order func-
tion types, as long as the effects in that type are ϕ. Let the predicate
confine (τ) (ϕ) mean that ϕ = ϕ′ for all nested types of the form
comp(τ ′, ϕ′) in τ . Let confine (Γ) (ϕ) mean that every type τ that
Γ maps to satisfies confine (τ) (ϕ). Let fa(e) = ∅ mean that e
syntactically does not contain any actions. Then, the idea of typ-
ing through confinement is captured by the following rule. The rule
says that for any e without any actions, if τ ’s nested effects are ϕ,
and the types of the free variables in e also only have ϕ as effects,
then e : τ with any predicate ϕ. (Our actual typing rule, shown in

Section 4.1 after more notation has been introduced, is more com-
plex. The actual rule also admits predicates over traces, which are
more general than predicates over individual actions that we have
considered here.)

fa(e) = ∅ fv(e) ∈ Γ
confine (τ) (ϕ) confine (Γ) (ϕ)

Γ ` e : τ
CONFINE

In our Memoir example, we use the CONFINE rule to derive the
invariants of the service invoked by the attacker. For instance, if we
can show that each of the TPM primitives do not reset the value
of the PCR, then using the CONFINE rule, we can claim that srvc,
when applied to these primitives does not reset the value of the
PCR. We revisit this proof with specific details in Section 4.2.

In typing a statically unknown expression using the CONFINE
rule we assume that the expression is syntactically free of ac-
tions and that all of its free variables are in Γ. These are reason-
able assumptions for untrusted code to be sandboxed. In an imple-
mentation these assumptions can be discharged either by dynamic
checks during execution, by static checks during program linking,
or by hardware-enforced interface confinement. For example, in
our Memoir analysis, the hardware ensures that TPM state can be
modified by the service only using the TPM interface.

Deriving properties based on code integrity Next we need to
show that srvc does not leak its secret key. We assume this prop-
erty about the initial service Memoir was invoked with. (This prop-
erty could be verified either by manual audits or automated static
analysis of the service code). However, in our model the adversary
could invoke Memoir on malicious service code (e.g., replacing a
legitimate password manager service with code of the adversary’s
choice). In this case, we can show with additional reasoning that
srvc invoked later must be the same program as the intial service.
To allow typing srvc, based on the proof of equality with the initial
service and an assumed type for the initial service, we add a new
rule called EQ.

Γ ` e : τ Γ ` e = e′ true

Γ ` e′ : τ
EQ

The EQ rule assigns the type τ of any expression e to any other
expression e′, which is known to be syntactically equal to e. This
rule is trivially sound.

This pattern of first establishing code identity (identify an un-
known code with some known code) and then using it to refine
types is quite common in proofs of security-relevant properties. A
similar pattern arises in analysis of systems that rely on memory
protections to ensure that code read from the shared memory is the
same as a piece of trusted code, and therefore, safe to execute. In
Datta et al.’s work on analysis of remote attestation protocols [10],
similar patterns arise for typing potentially modified software exe-
cuted in a machine’s boot sequence. Their model is untyped, but if
it were to be typed, EQ could be used to complete the proofs.

4. Type System and Assertion Logic
The syntax for System M types is shown in Figure 4. Types for
expressions, denoted τ , include type variables (X), a base type
b, dependent function types (Πx:τ1.τ2), and polymorphic function
types (∀X.τ). Since System M focuses on deriving trace properties
of programs, the difference between base types such as unit and
bool is of little significance. Therefore, System M has one base
type b to classify all first-order terms. The type any contains all
syntactically well-formed expressions (any stands for “untyped”).
Memory always stores expressions of type any because the adver-
sary could potentially write to any memory location.

Similar to HTT, a suspended computation comp(c) is assigned a
monadic type comp(ηc), where ηc is a closed computation type. A

4 2014/7/22

Expr types τ ::= X | b | Πx:τ1.τ2 | ∀X.τ | comp(ηc) | any
Comp types η ::= x:τ.ϕ | ϕ | (x:τ.ϕ, ϕ′)
Closed c types ηc ::= u1.u2.i.(x:τ.ϕ1, ϕ2)

| Πx:τ.u1.u2.i.(y:τ.ϕ1, ϕ2)
Assertions ϕ ::= P | e1 = e2 | ϕ e | > | ⊥ | ¬ϕ

| ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∀x:τ.ϕ | ∃x:τ.ϕ

Action Kinds α ::= Act(ηc) | Πx:τ.α | ∀X.α
Type var ctx Θ ::= · | Θ, X
Signatures Σ ::= · | Σ, A :: α
Logic var ctx ΓL ::= · | ΓL, x : b | ΓL, x : any
Typing ctx Γ ::= · | Γ, x : τ
Formula ctx ∆ ::= · |∆, ϕ
Exec ctx Ξ ::= ub : b, ue : b, i : b

Figure 4. Types and typing contexts

closed computation type u1.u2.i.(x:τ.ϕ1, ϕ2) contains two post-
conditions, ϕ1 and ϕ2. Both are interpreted relative to a trace T .
ϕ1, the partial correctness assertion, holds whenever a computa-
tion of this type finishes execution on the trace. It is parametrized
by the id i of the thread that runs the computation, the interval
(ub, ue] during which the computation runs and the return value x
of the computation.ϕ2, called the invariant assertion, holds while a
computation of the computation type is still executing (or is stuck),
but has not returned. It is parametrized by the id i of the thread
running the computation and the time interval (ub, ue] over which
the computation has executed. Formally, a suspended computation
comp(c) has type comp(u1.u2.i.(x:τ.ϕ1, ϕ2)) if the following two
properties hold for every trace T : (1) if a thread ι on trace T begins
to run c at time U1 and at time U2, c returns an expression e, then
e has type τ , and T satisfies ϕ1[U1, U2, ι, e/u1, u2, i, x]; (2), if a
thread ι on trace T begins to run c at time U1 and at time U2, c has
not finished, then T satisfies ϕ2[U1, U2, ι/u1, u2, i]. The meaning
of all types is made precise in Section 5.2.

The type η may be either a partial correctness assertion,
an invariant assertion, or a pair of both. Fixpoint computations
have the type Πx:τ.u1.u2.i.(y:τ.ϕ1, ϕ2), discussed in more de-
tail with typing rules. If f has this type, then for any e : τ ,
(f e) is a recursive computation of closed computation type
u1.u2.i.(y:τ.ϕ1, ϕ2)[e/x].

Assertions, denoted ϕ, are standard first-order logical formulas
interpreted over traces. Atomic assertions are denoted P .

We write α to categorize actions. A fully applied action has the
type Act(ηc), where ηc denotes the action’s effects.

4.1 Typing Rules
Our typing judgments use several contexts. Θ is a list of type
variables. The signature Σ contains specifications for action sym-
bols. ΓL contains logical variable type bindings. These variables
can only be of the type b or any. Γ contains dependent variable
type bindings. ∆ contains logical assertions. The ordered context
Ξ = ub, ue, i provides reference time points and a thread id to
typing judgments for computations. When typing a computation,
(ub, ue] are parameters representing the interval during which the
computation executes and i is a parameter representing the id of
the thread that executes the computation. A summary of the typing
judgments is shown below.
u:b; Θ; Σ; ΓL; Γ; ∆ `Q e : τ expression e has type τ
u:b; Θ; Σ; ΓL; Γ; ∆ `Q c : ηc fixed-point computation c has type ηc
Ξ; Θ; Σ; ΓL; Γ; ∆ `Q c : η computation c has type η
Ξ; Θ; Σ; ΓL; Γ; ∆ ` ϕ silent ϕ holds while reductions are

non-effectful
Θ; Σ; ΓL; Γ; ∆ ` ϕ true ϕ is true

When typing expressions and fixpoint computations, u is earli-
est time point when the term can be evaluated on the trace. The first
three judgments are indexed by a qualifier Q, which can either be
empty or ub.ue.i.ϕ, which we call an invariant. Variables ub, ue,
and i have the same meaning as the context Ξ, and may appear free
in ϕ. Rules indexed with ub.ue.i.ϕ are used for deriving properties
of programs that execute adversarial code. Roughly speaking, the
context Γ in these rules contains variables that are place holders
for expressions that satisfy the invariant ϕ. We explain here some
selected rules of our type system; the remaining rules are listed in
the accompanying technical appendix.

Silent threads Reductions on a trace can be categorized into those
induced by the rules R-ACTS and R-ACTF in Figure 2 and those
induced by other rules. We call the former effectful and the latter
non-effectful or silent. The typing judgment Ξ; Θ; Σ; ΓL; Γ; ∆ `
ϕ silent specifies properties of threads while they perform only
silent reductions or do not reduce at all. The judgment is auxiliary
in proofs of both partial correctness and invariant assertions, as will
become clear soon. The following rule states that if ϕ is true, then
a trace containing a thread’s silent computation satisfies ϕ.

Ξ; Θ; Σ; ΓL; Γ; ∆ ` ϕ true

Ξ; Θ; Σ; ΓL; Γ; ∆ ` ϕ ok

Ξ; Θ; Σ; ΓL; Γ; ∆ ` ϕ silent
SILENT

The type system may be extended with other sound rules for
this judgment. For instance, the following is a trivially sound rule:
ub.ue.i; Θ; Σ; ΓL; Γ; ∆ ` (∀l, t, ub<t ≤ ue ⇒ ¬Read i l t) silent.
If a thread i is not performing any action during time interval
(ub, ue], then it does not read memory during that time interval.

Partial correctness typing for computations Figure 5 shows se-
lected rules for establishing partial correctness postconditions of
computations. The judgment u1, u2, i; Θ; Σ; ΓL; Γ; ∆ ` c : x:τ.ϕ
means that if in trace T any thread with id ι begins to execute com-
putation c at time U1, and at time U2, c returns an expression e,
and T satisfies all the formulas in ∆, then e has type τ , and T also
satisfies ϕ[U1, U2, ι, e/u1, u2, i, x].

In rule ACT, the type of an atomic action is directly derived from
the specification of the action symbol in a. We elide rules for the
judgment a :: Act(u1.u2.i.(x:τ.ϕ1, ϕ2)), which derives types for
actions based on the specifications in Σ. We explain the invariant
assertions for actions with the discussion of invariant typing for
computations. When typing a, the logical variable typing context
includes u2 : b and i : b, because they may appear free in Γ and ∆.
For brevity, we elide the types for variables of type b, as they are
obvious from the context.

Rule RET assigns e’s type to ret(e). The trace T containing
the evaluation of ret(e) satisfies two properties, which appear in
the postcondition of ret(e). First, the return expression, which
is bound to x, is e (assertion (x = e)). Second, T satisfies any
property ϕ such that ϕ silent holds. This is because reduction of
ret(e) is silent. Here e is typed under the time point u2, indicating
that e can only be evaluated after u2.

Rule SEQC types the sequential composition letc(c1, x.c2).
Starting at time point u0 and returning at u3, the execution of
letc(c1, x.c2) in any thread i can be divided into three segments
for some u1, u2: between time u0 and u1, where thread i takes
only a silent step, pushing x.c2 onto the stack; between time u1 and
u2, where the computation c1 runs; and between time u2 and u3,
where c2 runs. The first three premises of SEQC assert the effects of
each these three segments. When type checking c2, the facts learned
from the execution so far (ϕ0 and ϕ1) are included in the context.
The fourth premise checks that ϕ is the logical consequence of the
conjunction of the three evaluation segments’ properties.

5 2014/7/22

Partial correctness typing

u1; Θ; Σ; ΓL, u2, i; Γ; ∆ `Q a :: Act(ub.ue.j.(x:τ.ϕ1, ϕ2))

u1, u2, i; Θ; Σ; ΓL; Γ; ∆ ` ϕ silent
fv(a) ∈ dom(Γ) let γ = [u1, u2, i/ub, ue, j]

d; Σ; ΓL; Γ ` u1.u2.i.(x:τ.ϕ1γ, ϕ2γ ∧ ϕ) ok

u1, u2, i; Θ; Σ; ΓL; Γ; ∆ `Q act(a) : (x:τ.ϕ1γ, ϕ2γ ∧ ϕ)
ACT

u2; Θ; Σ; ΓL, u1, i; Γ; ∆ `Q e : τ

u1, u2, i; Θ; Σ; ΓL; Γ; ∆ ` ϕ silent fv(e) ⊆ dom(Γ)

u1, u2, i; Θ; Σ; ΓL; Γ; ∆ `Q ret(e) : x:τ.((x = e) ∧ ϕ)
RET

u0, u1, i; Θ; Σ; ΓL;u3,Γ; ∆, u0 ≤ u1 ` ϕ0 silent

u1, u2, i; Θ; Σ; ΓL, u0 : b, u3; Γ; ∆, u1 < u2, ϕ0

`Q c1 : x:τ.ϕ1

u2, u3, i; Θ; Σ; ΓL, u0, u1; Γ, x : τ ; ∆, u2 < u3, ϕ0, ϕ1

`Q c2 : y:τ ′.ϕ2

Θ; Σ; ΓL, u1, u2, u0, u3, i; Γ, x:τ, y : τ ′; ∆
` (ϕ0 ∧ ϕ1 ∧ ϕ2)⇒ ϕ true

Θ; Σ; ΓL, u0, u3, i; Γ, y : τ ′ ` ϕ ok
fv(letc(c1, x.c2)) ⊆ dom(Γ)

u0, u3, i; Θ; Σ; ΓL; Γ; ∆ `Q letc(c1, x.c2) : y:τ ′.ϕ
SEQC

u0, u1, i; Θ; Σ; ΓL, u3; ·; ∆, u0 ≤ u1 ` ϕ0 silent

u1, u2, i; Θ; Σ; ΓL, u0 : b, u3; ·;ϕ0, u1 ≤ u2

`Q c1 : x:τ.ϕ1

u2, u3, i; Θ; Σ; ΓL;u0, u1;x : τ ; ∆, u2 ≤ u3, ϕ0, ϕ1

`Q2 c2 : y:τ ′.ϕ2

Θ; Σ; ΓL;u0, u3, i; Γ, u1, u2, y : τ ′; ∆
` (ϕ0 ∧ ϕ1 ∧ ϕ2)⇒ ϕ true

Θ; Σ; ΓL;u0, u3, i,Γ, y : τ ′ ` ϕ ok

u0, u3, i; Θ; Σ; ΓL; Γ; ∆ `Q2 (c1; c2) : y:τ ′.ϕ
SEQCCOMP

Invariant typing

Θ; Σ; ΓL, u0, u3, i; Γ; ∆ ` ϕ ok

u0, u1, i; Θ; Σ; ΓL, u3; Γ; ∆, u0 ≤ u1 ` ϕ0 silent

u0, u3, i; Θ; Σ; ΓL; Γ; ∆, u0 ≤ u3 ` ϕ′0 silent

u1, u2, i; Θ; Σ; ΓL, u0 : b, u3; Γ; ∆, u1 < u2, ϕ0

`Q c1 : x:τ.ϕ1

u1, u3, i; Θ; Σ; ΓL; Γ; ∆, u0 : b, u1 ≤ u3, ϕ0 `Q c1 : ϕ′1
u2, u3, i; Θ; Σ; ΓL; Γ; ∆, u0, u1, x : τ, u2 ≤ u3, ϕ0, ϕ1

`Q c2 : ϕ2

Θ; Σ; ΓL, u0, u3, i; Γ; ∆ ` ϕ′0 ⇒ ϕ true

Θ; Σ; ΓL, u0, u3, i; Γ, u1; ∆ ` (ϕ0 ∧ ϕ′1)⇒ ϕ true

Θ; Σ; ΓL, u0, u3, i; Γ, u1, u2, x:τ ; ∆
` (ϕ0 ∧ ϕ1 ∧ ϕ2)⇒ ϕ true

fv(letc(c1, x.c2)) ⊆ dom(Γ)

u0, u3, i; Θ; Σ; ΓL; Γ; ∆ `Q letc(c1, x.c2) : ϕ
SEQCI

Figure 5. Selected Rules for Computation Typing

The above rules have the same qualifier Q in the premises
and the conclusion. Rule SEQCCOMP combines derivations with
different qualifiers in a sequencing statement. The Γ context in the
typing of c1 and c2 must be empty. Because the free variables in c1
are place holders for expressions that satisfy an invariant ϕ1, while
the free variables in c2 are for ones that satisfy a different invariant
ϕ2, c1 and c2 cannot share free variables except those in ΓL. Note
that both Q and Q2 can be empty. This rule is necessary for typing

the sequential composition of two programs that contain differently
sandboxed code: c1 executes sandboxed code that satisfies ϕ1 and
c2 either contains no sandboxed programs, or ones that satisfy ϕ2 .

Invariant typing for computations The meaning of the invariant
typing judgment u1, u2, i; Θ; Σ; ΓL; Γ; ∆ ` c : ϕ is the following:
Assuming that on a trace T , thread ι begins to execute c at time U1,
and at time U2 c has not yet returned (this includes the possibility
that c is looping indefinitely or is stuck), if T satisfies assumptions
in ∆, then T also satisfies ϕ[U1, U2, ι/u1, u2, i].

We first explain the invariant assertions for actions (rule ACT).
The thread executing the atomic action is silent before the action
returns. Therefore, the invariant assertion of the action is the con-
junction of the invariant specified in Σ and the effect of being silent.

Next, we explain the rule SEQCI for the sequencing statement
letc(c1, x.c2). We need to consider three cases when deriving the
invariant assertion ϕ of letc(c1, x.c2) in the interval (u0, u3]: (1)
the computation has not started until u3 (2) the computation c1
started but has not returned until u3, (3) the computation c1 has
returned, but c2 has not returned until u3. The first five premises
of rule SEQCI establish properties of a silent thread, the partial
correctness and invariant assertions of the computation in c1, and
the invariant assertion of c2. The next three judgments check that
in each of the three cases (1)–(3), the final assertion ϕ holds.

For example, comp(letc(act(read e), x.retx)) can be as-
signed the following type. Predicate (mem l v u) is true when
at time u, memory location l is allocated and stores the expression
v. Predicate eval e e′ is true if e β-reduces to e′, which cannot
reduce further. Write ι l e u states that thread ι writes to address
l expression e at time u. The partial correctness assertion states
that this suspended computation returns what’s stored in the loca-
tion that e reduces to. The invariant assertion states that during its
execution, the thread executing it does not write to the memory.
comp(ub.ue.i.(r:any.∀l, v, eval e l ∧ mem l v ue ⇒ y = e,

∀l, v, u,ub < u ≤ ue ⇒ ¬write i l v u))

Fixpoint computation The fixpoint is typed under a time point u,
which is the earliest time when the fixpoint is unrolled.
Γ1 = y : τ, f : Πy:τ.comp(u1.u3.i.(x:τ1.ϕ, ϕ

′))

u1, u2, i; Θ; Σ; ΓL; Γ; ∆, u ≤ u1 ≤ u2 ` ϕ0 silent

u2, u3, i; Θ; Σ; ΓL, u1, u; Γ,Γ1; ∆, u2 < u3, ϕ0 `Q c : x:τ1.ϕ1

u2, u3, i; Θ; Σ; ΓL;u1, u; Γ,Γ1; ∆, u2 ≤ u3, ϕ0 `Q c : ϕ2

Θ; Σ; ΓL, u1, u, u2, u3, i; Γ,Γ1, x : τ1; ∆ ` (ϕ0 ∧ ϕ1)⇒ ϕ true

Θ; Σ; ΓL, u1, u2, u3, i, u; Γ,Γ1; ∆ ` (ϕ0 ∧ ϕ2 ⇒ ϕ′) true

Θ; Σ; ΓL, u1, u3, i, u; Γ, y : τ ; ∆ ` ϕ0[u3/u2]⇒ ϕ′ true

Θ; Σ; ΓL, u; Γ ` Πy:τ.u1.u3.i.(x:τ1.ϕ, ϕ
′) ok

fv(fix(f(y).c)) ∈ dom(Γ)

u; Θ; Σ; ΓL; Γ; ∆ `Q fix(f(y).c) : Πy:τ.u1.u3.i.(x:τ1.ϕ, ϕ
′)

FIX

Rule FIX simultaneously establishes the partial correctness and
invariant assertions of a fixpoint. The third and fourth premises es-
tablish the partial correctness and invariant assertions of the body
c of the fixpoint. The fifth premise checks that the specified par-
tial correctness assertion ϕ is entailed by the conjunction of the
assertions of a silent thread and the assertion of the body. The
next two premises check the invariant assertion ϕ′. For example,
fix f(x).write x 0; read x; lete(f(x+1); z.ret z) has the type:
Πx:b.ub.ue.i.(y:any.⊥,

∀u, l, v,ub < u ≤ ue ∧ read i l u
⇒ ∃u′, u′ < u ∧ write i l v u′)

Expression typing Similar to the fixpoint, the expression typing
judgment is parameterized over a time point u, which is the earliest
time point that e is evaluated. Recall that the typing rule for ret(e)
types e under the time point when ret(e) returns. This is because e
can only be evaluated after ret(e) finishes. Most expression typing
rules are standard. A representative subset is listed in Figure 6.

6 2014/7/22

u1, u2, i; Θ; Σ; ΓL;ue,Γ; ∆, u1 ≥ ue `Q c : (x:τ.ϕ1, ϕ2)

Θ; Σ; ΓL, ue:b, u1:b, u2:b, i:b; Γ, x : τ ; ∆ ` ϕ1 ⇒ ϕ′1 true

Θ; Σ; ΓL, ue:b, u1:b, u2:b, i:b; Γ; ∆ ` ϕ2 ⇒ ϕ′2 true

Θ; Σ; ΓL, ue:b; Γ ` u1.u2.i.(x:τ.ϕ′1, ϕ
′
2) ok

fv(c) ⊆ dom(Γ)

ue; Θ; Σ; ΓL; Γ; ∆ `Q comp(c) : comp(u1.u2.i.(x:τ.ϕ′1, ϕ
′
2))

COMP

u; Θ; Σ; ΓL; Γ; ∆ `Q e : τ

Θ; Σ; ΓL, u; Γ; ∆ ` e = e′ true fv(e′) ⊆ dom(Γ)

u; Θ; Σ; ΓL; Γ; ∆ `Q e′ : τ
EQ

ϕ is trace composable
ub, ue, i; Θ; Σ; ΓL, u; Γ; ∆ ` ϕ silent
ub:b, ue:b, i:b ` ϕ ok fa(e) = ∅ fv(e) ⊆ Γ
confine (τ) (ub.ue.i.ϕ) confine (Γ) (ub.ue.i.ϕ)

u; Θ; Σ; ΓL; Γ; ∆ `ub.ue.i.ϕ e : τ
CONFINE

u; Θ; Σ; ΓL; Γ; ∆ ` e : τ ub:b, ue:b, i:b ` ϕ ok

u; Θ; Σ; ΓL; Γ; ∆ `ub.ue.i.ϕ e : τ
CONF-SUB

Figure 6. Selected expression typing rules

Rule COMP assigns a monadic type to a suspended computation
by checking the computation. Since the suspended computation can
only execute after ue, the logical context of the first premise can
safely assume that the beginning time point of c is no earlier than
ue. As usual, the rule also builds-in weakening of postconditions.

The rule EQ, motivated in Section 3.1, assigns an expression e′,
the type of e, if e is syntactically equal to e′.

The rule CONFINE, motivated in Section 3.1, allows us to type
an expression from the knowledge that it contains no actions and
that its free variables will be substituted with expressions with
effect ϕ. The main generalization from the simpler rule presented
in Section 3.1 is that now ϕ is a predicate over an interval and a
thread in a trace, not just a predicate over individual actions. The
intuitive idea behind the rule is similar: If c is a computation that
is free of actions and confined to use the computations c1, . . . , cn
for interaction with the shared state, and each of the computations
c1, . . . , cn maintain a trace invariant ϕ while they execute, then as
c executes, it maintains ϕ.

Technically, because ϕ also accepts as arguments any inter-
val on a trace (it has free variables ub, ue), we require that ϕ be
trace composable, meaning that if ϕ holds on two consecutive in-
tervals of a trace, then it hold across the union of the intervals.
Formally, ϕ is trace composable if ∀u1, u2, u3, i. (ϕ(u1, u2, i) ∧
ϕ(u2, u3, i)) ⇒ ϕ(u1, u3, i). Further ϕ has to hold on inter-
vals when thread i is silent. This prevents us from derving arbi-
trary properties of untrusted code. For instance, ϕ cannot be ⊥.
(No trace can satisfy the invariant ⊥.) This rule relies on check-
ing that τ relates to the invariant ϕ, represented as the relation
confine (τ) (ub.ue.i.ϕ). This relation means that ϕ is both the par-
tial correctness assertion and the invariant assertion in every com-
putation type comp(ηc) occurring in τ . Similarly, Γ is required to
map every free variable in e to a type that satisfied the same rela-
tion. The conclusion is indexed by the invariant ub.ue.i.ϕ to record
the fact that all substitutions for variables in Γ need to satisfy ϕ.

confine (b) (ub.ue.i.ϕ)

confine (τ1) (ub.ue.i.ϕ) confine (τ2) (ub.ue.i.ϕ)

confine (Π :τ1.τ2) (ub.ue.i.ϕ)

confine (τ) (ub.ue.i.ϕ)

confine (comp(ub.ue.i.(x:τ.ϕ, ϕ))) (ub.ue.i.ϕ)

The CONFINE rule itself does not stipulate any conditions on
the predicate ϕ, other than requiring that ϕ be trace composable.
However, if e is of function type, and expects some interfaces as
arguments, then in applying CONFINE to e, we must choose a ϕ to
match the actual effects of those interfaces, else the application of
e to the interfaces cannot be typed.

The rule CONF-SUB constrains a regular typing derivation to a
specific invariant ub.ue.i.ϕ. This is sound because the first premise
does not require the substitutions for Γ to satisfy any specific
invariant, so they can be narrowed down to any invariant. The
conclusion must be tagged with the invariant ϕ, because: (1) τ
could be a base type, in which case, the invariant is not evident
in e’s type; and (2) the types in Γ are allowed to contain nested
effects that are not ϕ. Reason (1) is also why the conclusion of the
CONFINE rule is indexed.

Finally, the time point enables expression types to include facts
that are established by programs executed earlier. For example, the
return type of letc(a1; z.ret(comp(a2))) can be the following,
assuming that the effect of action a1 is A1 i u, and a2 is A2 i u.
comp(ub.ue.i.(r: b.∃ u, ub<u≤ue ∧ A2 i u ∧ ∃j, u′, u′<u ∧ A1 j u

′,
>)).

We wouldn’t have been able to know that A1 happens before
A2 without the time point in the expression typing rules.

Logical Reasoning System M includes a proof system for first-
order logic, most of which is standard. We show here the rule
HONEST, which allows us to deduce properties of a thread based
on the invariant assertion of the computation it executes.

u1, u2, i; Θ; Σ; ΓL; ·; ∆ ` c : ϕ

Θ; Σ; ΓL; ·; ∆ ` start(I, c, u) true

Θ; Σ ` ΓL,Γ ok

Θ; Σ; ΓL; Γ; ∆ ` ∀u′:b.(u′>u)⇒ ϕ[u, u′, I/u1, u2, i] true
HONEST

If we know that a thread ι starts executing at time uwith payload
computation c (premise start(ι, c, u)) and computation c has an
invariant postcondition ϕ, then we can conclude that at any later
point u′, ϕ holds for the interval (u, u′]. The condition that c
be typed under an empty Γ context is required by the soundness
proofs, which we discuss in Section 5.4.

4.2 Examples
We prove the following state continuity property of Memoir. It
states that after the service has been initialized at time ui with the
key skey, whenever we invoke the service with state at a time
point u, later than ui, it must be the case that, the service was either
initialized or produced the state state at a time point u′. Moreover,
there is no invokations of the service between u′ and u.
∀ui, state, state ′, skey, iinit, sinit

service init(iinit, skey, service, sinit)@ui ⇒
∀u > ui. service invoke(i, skey, state, state ′)@u⇒
∃j, u′ < u. ((∃s.service invoke(j, skey, s, state)@u′

∨ service try(j, skey, state)@u′

∨ service init(j, skey, state)@u′)
∧ (∀j′. ¬service invoke(j′, skey, · · ·) ◦ (u′, u)]))

The expressiveness of the first-order logic enables us to specify
the above property, where the ordering of events is crucial. For the
full proofs, we refer the reader to our technical appendix. We now
revisit our discussion in Section 3 and highlight critical uses of the
System M program logic in the proof. Recall that Memoir has two
phases: service initialization and service invocation. During initial-
ization, we assume that the Memoir module runmodule (Figure 3)

7 2014/7/22

is assigned NVRAM location Nloc and service service . The per-
mission for accessing Nloc (which stores the secret key used to en-
crypt state and the freshness tag) is set to the value of PCR 17. This
PCR stores a nested hash s hash = H(h||code hash(service)).
Here, the term H(x) denotes hash of x, || denotes concatenation,
h is any value and code hash(x) is a hash of the textual reification
of program x. After initialization, we prove the following two key
invariants about executions of runmodule:
1. PCR Protection: The value of PCR 17 contains the value
s hash only during late launch sessions running runmodule .

2. Key Secrecy: If the key corresponding to a service is available
to a thread, then it must have either generated it or read it from
Nloc.

We prove these invariants using the HONEST rule, which requires
us to type runmodule . Since runmodule invokes srvc, we need to
type srvc. Recall that srvc is adversarially-supplied code. Thus, in
typing it we make use of the CONFINE and EQ rules.

For the first invariant, we derive the necessary type for srvc by
typing against the TPM interface. The particular invariant type we
wish to derive about srvc is that in a late launch session if the value
in the PCR has been set to a value that is not a prefix of s hash,
then srvc cannot change the value in the PCR to something that is
a prefix of s hash (i.e., it cannot fool the NVRAM access control
mechanism into believing that service was loaded when it was not).

(srvc ExtendPCR ResetPCR · · ·) (state, req) :
cmp(ub, ue, i. ¬PCRPrefix(pcr17, s hash)@ub ⇒
∀u ∈ (ub, ue]. (InLLSession(u, runmodule, i)

⇒ ¬PCRPrefix(pcr17, s hash)@u)

To derive this type using the CONFINE rule, it is sufficient to
show that each function in the TPM interface can be assigned
this type. For example, the ExtendPCR interface satisfies this
invariant as it can only extend a PCR value. This derivation is a
key step in proving that the service does not change the value of
the PCR to a state that allows any entity other than runmodule to
read the NVRAM location Nloc (i.e., the first invariant of srvc in
Section 3.1).

Similarly, we can prove that the permissions onNloc are always
tied to PCR 17 being s hash, by typing srvc with the invariant
that the permissions on Nloc cannot be changed. Thus, whenever
Nloc is read from, the value of PCR 17 is s hash. We also show
separately that in any particular instance of runmodule with srvc,
the state of PCR 17 must be H(h||code hash(srvc)) for some
h. Therefore, by Nloc’s access control mechanism, we prove that
H(h||code hash(srvc)) = s hash and therefore srvc = service
(where = denotes syntactic equality).

This is a key step to proving the key secrecy invariant. It al-
lows us to transfer assumptions about the known Memoir service
service to the adversarially-supplied service srvc. Specifically, we
assume that service has the following type τsec (which means that
if the input of service does not contain a secret s then the out-
put doesn’t contain it) and an invariant KeepsSecret(i, s,Nloc)
(which means that s is not sent out on the network and the only
NVRAM location s possibly written to is Nloc).
τsec = Πi : msg. cmp(ub, ue, i.

(x : msg.∀s. ¬Contains(i, s)⇒ ¬Contains(x, s),
∀s. ¬Contains(i, s)⇒ KeepsSecret(i, s,Nloc) ◦ (ub, ue]))

Using the above assumption about service and the proof that
srvc = service , we use EQ to derive the required type for srvc
(i.e., the second invariant of srvc discussed in Section 3.1).

5. Semantics and Soundness
We build a step-indexed semantic model [2] for types and prove
soundness of System M relative to that. Central to the seman-

tics is the notion of invariant. We build two sets of seman-
tics: one is a semanticsx for invariants of the form ub.ue.i.ϕ
(RE INV[[ub.ue.i.ϕ]]), and the other is an invariant-indexed seman-
tics for types (RE(ub.ue.i.ϕ)[[τ]]). These two sets coincide when
confine (τ) (ub.ue.i.ϕ) holds (Lemma 1).

5.1 A Step-indexed Semantics for Invariants
We define RV INV[[Φ]]T ;u, RE INV[[Φ]]T ;u, RCINV[[Φ]]T ;u (Φ =
ub.ue.i.ϕ), the sets of step-indexed normal forms, expressions, and
computations that satisfy the invariant ϕ respectively. T is the trace
that the term is evaluated on and u is the earliest time point when
the term is evaluated. These sets categorize invariant-confined ad-
versarial programs.

We first define the set of step-indexed computations that satisfy
an invariant ϕ below. An indexed computation (k, c) belongs to
this relation if the following holds: (1) during any interval uB and
uE when thread ι executes c on T , ϕ[uB , uE , ι/ub, ue, i] holds
on T and (2) if c completes at time uE , then the expression that
c returns, indexed by the remaining steps of the trace, satisfies the
same invariant.
RCINV[[ub.ue.i.ϕ]]T ;u =
{(k, c) | ∀uB , uE , ι, u ≤ uB ≤ uE ,

let γ = [uB , uE , ι/u1, u2, i],
jb is the length of the trace from time uB to the end of T
je is the length of the trace from time uE to the end of T
k ≥ jb > je,
the configuration at time u1 is

uB−−→ σb . · · · , 〈ι;x.c′ :: K; c〉 · · ·
the configuration at time uE is

uE−−→ σe . · · · , 〈ι;K; c′[e′/x]〉 · · ·
between uB and uE , the stack of thread i always contains x.c′::K
=⇒ (je, e

′) ∈ RE INV[[ub.ue.i.ϕ]]T ;uE and T �θ ϕ[e′/x]}
∩ {(k, c) | ∀uB , uE , ι, u ≤ uB ≤ uE , let γ = [uB , uE , ι/u1, u2, i],
jb is the length of the trace from time uB to the end of T ,
je is the length of the trace from time uE to the end of T
k ≥ jb ≥ je,
the configuration at time uB is

uB−−→ σb . · · · , 〈ι;x.c′ :: K; c〉 · · ·
between uB and uE (inclusive), the stack of thread i always
contains prefix x.c′::K
=⇒ T �θ ϕ}
We explain some parts of the definition. At time uB , thread ι

begins to run c, which is formalized by requiring that the thread
〈ι;K; c〉 is in the configuration right after time uB . At time uE , c
returns an expression e′ to its context, which is formalized by re-
quiring that thread ι’s top frame is popped off the stack with e′ sub-
stituted for x, and that the top frame remains unchanged between
uB and uE . Both uB and uE are within the last k configurations
of the trace because the length of the trace is n and k ≥ jb > je.
The earliest time point to interpret e′ is uE , which is when e′ is
returned. The index for the returned expression e′ is je, which is
less than k. Hence, our step-indices count the number of remain-
ing steps in the trace. Moreover, these remaining steps include not
just steps of the thread containing c, but also other threads. This
ensures the computation c’s postconditions hold even when it ex-
ecutes concurrently with other threads (robust safety; Theorem 4).
For the second set, c must not have finished at uE , so between ub
and ue, no frame on the stack x.c′ :: K should have been popped.

The relation RV INV[[ub.ue.i.ϕ]]T ;u includes all normal expres-
sions that are not introduction forms (i.e. functions and suspended
computations). These normal forms cannot be further reduced in
any evaluation context, and therefore do not have any effects (they
are silent). A function is in this relation if, given arguments main-
taining the same invariant, the function body also maintains that
invariant. As is standard, the step-index of the argument is smaller
than that of the function because function application consumes a
step. The case of polymorphic functions is defined similarly. A sus-

8 2014/7/22

pended computation comp(c) belongs to this relation if c belongs
to theRCINV[[ub.ue.i.ϕ]]T ;u relation defined earlier.
RV INV[[ub.ue.i.ϕ]]T ;u = {(k, nf) | nf 6= λx.e,ΛX.e, comp(c)}
∪{(k, comp(c)) | (k, c) ∈ RCINV[[ub.ue.i.ϕ]]T ;u}
∪{(k, λx.e′) | ∀j, u′, j < k, u′ ≥ u

(j, e′) ∈ RE INV[[ub.ue.i.ϕ]]T ;u′

=⇒ (j, e[e′/x]) ∈ RE INV[[ub.ue.i.ϕ]]T ;u′}
∪ {(k,Λx.e) | ∀j, j < k =⇒ (j, e) ∈ RE INV[[ub.ue.i.ϕ]]T ;u}

The definition of theRE INV[[ub.ue.i.ϕ]]T ;u relation is standard:
if e evaluates to a normal form nf in m steps, then nf has to be in
the value relation indexed by the number of the remaining steps.
RE INV[[ub.ue.i.ϕ]]T ;u=
{(k, e) |∀0 ≤ m ≤ k, e→m e′ 9

=⇒ (n−m, e′) ∈ RV INV[[ub.ue.i.ϕ]]T ;u}
This relation includes all programs (including ill-typed ones)

that satisfy the invariant if executed in a context that satisfies that
invariant. This relation justifies the soundness of CONFINE rule.
Confined adversary-supplied code is in the RE INV[[ub.ue.i.ϕ]]T ;u

relation (Lemma 2).

5.2 A Step-indexed Model for Types
As programs include adversarial code, which requires its evaluation
context to maintain an invariant, the semantics of types need to be
indexed by invariants of the form ub.ue.i.ϕ.

Types The interpretation of an expression type τ is a semantic
type, written C. Each C is a set of pairs; each pair contains a
step-index and an expression. The expression has to be in normal
form, denoted nf, that cannot be reduced further under call-by-
name β-reduction. C contains the set of all possible indices and all
syntactically well-formed normal forms. This is used to interpret
the type any of untyped programs. As usual, we require that C
be closed under reduction of step-indices. Let P(S) denote the
powerset of S. The set of all semantic types is denoted Type.
Type

def
= {C | C ∈ P({(j, nf) | j ∈ N}) ∧

(∀k, nf, (k, nf) ∈ C ∧ j < k =⇒ (j, nf) ∈ C) ∧
(∀k, nf, nf 6= λx.e,ΛX.e, comp(e) =⇒ (j, nf) ∈ C)}

Interpretation of expression types We define the value and ex-
pression interpretations of expression types τ (writtenRV(Φ)[[τ]]θ;T ;u

and RE(Φ)[[τ]]θ;T ;u), as well as the interpretation of computation
types η (written RC(Φ)[[η]]θ;T ;u) simultaneously by induction on
types (Φ = ub.ue.i.ϕ). Let θ denote a partial map from type vari-
ables to Type, T denote the trace that expressions are evaluated on,
and u denote the time point after which expressions are evaluated.
Figure 11 defines the value and expression interpretations. We omit
the cases for any and X .

The interpretation of the base type b is the same asRV INV[[Φ]]θ;T ;u.
The type b itself doesn’t specify any effects, and, therefore, expres-
sions in the interpretation of b only need to satisfy the invariant
Φ. The interpretation of the function type Πx:τ1.τ2 is nonstan-
dard: the substitution for the variable x is an expression, not a
value. This simplifies the proof of soundness of function applica-
tion: since System M uses call-by-name β-reduction, the reduction
of e1 e2 need not evaluate e2 to a value before it is applied to the
function that e1 reduces to. Further, the definition builds-in both
step-index downward closure and time delay: given any argument
e′ that has a smaller index j and evaluates after u′, which is later
than u, the function application belongs to the interpretation of the
argument type with the index j and time point u′. The interpreta-
tion of the function type also includes normal forms that are not λ
abstractions that are in the RV INV[[ub.ue.i.ϕ]]θ;T ;u relation. These
are adversary-supplied untyped code, which is required by our type
system to satisfy the invariant ub.ue.i.ϕ.

The interpretation of the monadic type includes suspended com-
putations (k, comp(c)) such that (k, c) belongs to the interpretation

of computation types, defined below. Because c executes after time
u, the beginning and ending time points selected for evaluating c
are no earlier than u. Similar to the interpretation of the function
type, the interpretation of the monadic type also includes normal
forms that are not monads, but satisfy the invariant ub.ue.i.ϕ. The
interpretation of the any type contains all normal forms.

We lift the value interpretation RV(Φ)[[τ]]θ;T ;u to the expres-
sion interpretationRE(Φ)[[τ]]θ;T ;u in a standard way.

Interpretation of formulas Formulas are interpreted on traces. We
write T � ϕ to mean that ϕ is true on trace T .
T � P ~e iff P ~e ∈ ε(T)
T � start(I, c, U) iff thread I has c as the active

computation with an empty stack
at time U on T

T � ∀x:τ.ϕ iff ∀e, e ∈ [[τ]] implies T � ϕ[e/x]

We assume a valuation function ε(T) that returns the set of
atomic formulas that are true on the trace T . For first-order quantifi-
cation, we select terms in the denotation of the types ([[τ]]), which
is defined as follows:

[[any]] = {e | e is an expression}
[[b]] = {e | e→∗ bv}
[[Πx:τ1.τ2]] = {λx.e | ∀e′, e′ ∈ [[τ1]] =⇒ e1[e′/x] ∈ [[τ2]]}
The types of the logical variables can only be b, any and func-

tion types. The interpretation of these types is much simpler than
that of expressions.

Interpretation of computation types The interpretation of a
computation type, RC(ub.ue.i.ϕ1)[[x:τ.ϕ]]θ;T ;Ξ, is a set of step-
indexed computations. The trace T contains the execution of the
computation. Ξ = ub, ue, i has its usual meaning, except that ub,
ue, and i are concrete values, not variables.

We define the semantics of the partial correctness type, denoted
RC(ub.ue.i.ϕ1)[[x:τ.ϕ]]θ;T ;Ξ, below. Informally, it contains the set
of indexed computations c, if T contains a complete execution of
the computation c in the time interval (ub, ue] in thread ι such that
c returns e′ at time ue and it is also the case that T satisfies ϕ[e′/x]
and that e′ has type τ semantically. Similar to the RCINV[[Φ]]T ;u

relation, these remaining steps include not just steps of the thread
executing c, but also other threads. The invariant ub.ue.i.ϕ1 is used
in the specification of the return value.
RC(ub.ue.i.ϕ1)[[x:τ.ϕ]]θ;T ;u1,u2,i = {(k, c) |
jb is the length of the trace from time u1 to the end of T
je is the length of the trace from time u2 to the end of T
k ≥ jb > je,
the configuration at time u1 is

u1−→ σb . · · · , 〈ι;x.c′ :: K; c〉 · · ·
the configuration at time u2 is

u2−→ σe . · · · , 〈ι;K; c′[e′/x]〉 · · ·
between u1 and u2, the stack of thread i always contains x.c′::K
=⇒ (je, e

′) ∈ RE(ub.ue.i.ϕ1)[[τ]]θ;T ;u2

and T � ϕ[e′/x]}
The interpretation for the invariant assertions is defined simi-

larly, and we omit its definition. Because c is being evaluated and
produces no return value, the interpretation need not be indexed by
an invariant. We write in place of the invariant.

5.3 Examples
We illustrate some key points of our semantic model. We instantiate
the next function (Section 2) for the read action as follows:

next(σ, read e1 e2) =

{
(σ, σ(`)) ` ∈ dom(σ)
(σ, stuck) ` /∈ dom(σ)

Predicate stuck ι u is true when thread ι is in the stuck state at
time u. The first example below shows the semantic specification of
the read action. The partial correctness assertion states that as long
as the location l being read is allocated when the read happens,

9 2014/7/22

RV(ub.ue.i.ϕ)[[b]]θ;T ;u = {(k, e) | (k, e) ∈ RV INV[[ub.ue.i.ϕ]]θ;T ;u}
RV(ub.ue.i.ϕ)[[Πx:τ1.τ2]]θ;T ;u = {(k, λx.e) | ∀j < k,∀u′, u′ ≥ u, ∀e′, (j, e′) ∈ RE(ub.ue.i.ϕ)[[τ1]]θ;T ;u′

=⇒ (j, e1[e′/x]) ∈ RE(ub.ue.i.ϕ)[[τ2[e′/x]]]θ;T ;u′}∪
{(k, nf) | nf 6= λx.e =⇒ (k, nf) ∈ RE INV[[ub.ue.i.ϕ]]T ;u}

RV(ub.ue.i.ϕ)[[∀X.τ]]θ;T ;u = {(k,ΛX) | ∀j < k,∀C ∈ Type =⇒ (j, e′) ∈ RE(ub.ue.i.ϕ)[[τ]]θ[X 7→C];T ;u}∪
{(k, nf) | nf 6= ΛX.e =⇒ (k, nf) ∈ RE INV[[ub.ue.i.ϕ]]T ;u}

RV(ub.ue.i.ϕ)[[comp(u1.u2.i.(x:τ.ϕ1, ϕ2))]]θ;T ;u =
{(k, comp(c)) | ∀uB , uE , ι, u ≤ uB ≤ uE , let γ = [uB , uE , ι/u1, u2, i]

(k, c) ∈ RC(ub.ue.i.ϕ)[[x:τγ.ϕ1γ]]θ;T ;uB ,uE ,ι ∩RC()[[ϕ2γ]]θ;T ;uB ,uE ,ι}∪
{(k, nf) | nf 6= comp(c) =⇒ (k, nf) ∈ RE INV[[u1.u2.i.ϕ]]T ;u}

RE(ub.ue.i.ϕ)[[τ]]θ;T ;u = {(k, e) | ∀j < m, e→m
β e′ 9=⇒ (k −m, e′) ∈ RV(ub.ue.i.ϕ)[[τ]]θ;T ;u}

Figure 7. Semantics for inv-indexed types

the thread does not get stuck and the expression y returned by
read is the in-memory content v of the location read. The invariant
assertion states that between the time the read action becomes the
redex and the time it reduces, the thread is not stuck.
1. (n, act(read e)) ∈
RC(Φ)[[y:any.∀l, v,mem l v u2 ∧ eval e l⇒

(y = e) ∧ ¬stuck i@(u1, u2]]]θ;T ;u1,u2,i

2. RC(Φ)[[∀j, l, e, t.(¬Write j l e t)]]θ;T ;u1,u2,i = ∅

The second example states that the interpretation of the invariant
computation type (∀j, l, e, t.(¬Write j l e t)), which states that no
thread performs a write action at any time, is the empty set. This
is because the semantics of invariant assertions require that any
trace containing the execution of such a computation satisfy this
invariant. A trivial counterexample is a trace containing a second
thread that writes to memory.

5.4 Soundness of the Logic
We prove that our type system is sound relative to the semantic
model of Section 5.2. We start by defining valid substitutions for
contexts. We write RT [[Θ]] to denote the set of valid semantic
substitutions for Θ. We write RG(Φ)[[Γ]]θ;T ;u to denote a set of
substitutions for variables in Γ. Each indexed substitution is a pair
of an index and a substitution γ for variables.

We first prove two key lemmas. Lemma 1 states that when all
the effects in τ are ub.ue.i.ϕ, then the interpretation of τ is the
same as the interpretation of the invariant ub.ue.i.ϕ. The proof is
by induction on the structure of τ .

Lemma 1 (Indexed types are confined). confine (τ) (ub.ue.i.ϕ)
impliesRE(ub.ue.i.ϕ)[[τ]]θ;T ;u = RE INV[[ub.ue.i.ϕ]]T ;u.

The following lemma states that if e does not contain any ac-
tions, then e, with its free variables substituted by expressions
that satisfy an invariant ub.ue.i.ϕ, satisfies the same invariant. The
proof is by induction on the structure of e.

Lemma 2 (Invariant confinement). If ϕ is composable, and thread
ι silent between time uB and uE implies T � ϕ[uB , uE , I/ub, ue, i],
then fa(e) = ∅, fv(e) ∈ dom(γ), and (n, γ) ∈ RE INV[[ub.ue.i.ϕ]]T ;u

imply (n, eγ) ∈ RE INV[[ub.ue.i.ϕ]]T ;u.

The soundness theorem (Theorem 3) has two different state-
ments for judgements with the empty qualifier and the invariant
qualifier. The ones for judgments with an empty qualifier state that
for any invariant Φ, if the substitution for Γ belongs to the inter-
pretation of types, then the expression (computation) belongs to
the interpretation of its type, indexed by the same invariant Φ. For
judgments qualified by a specific invariant Φ, the soundness theo-
rem statements are also specific to that Φ.

Theorem 3 (Soundness).

Assume that ∀A :: α ∈ Σ, ∀Φ, T , n, u, (n,A) ∈ RA(Φ)[[α]]·;T ;u,

1. (a) E :: u : b; Θ; Σ; ΓL; Γ; ∆ `Φ e : τ , ∀θ ∈ RT [[Θ]],
∀γL ∈ [[ΓL]], ∀U,U ′, U ′ ≥ U , let γu = [U/u], ∀T , ∀n, γ,
(n; γ) ∈ RG(Φ)[[Γγuγ

L]]θ;T ;U′ , T � ∆γγuγ
L implies

(n; eγ) ∈ RE(Φ)[[τγγuγ
L]]θ;T ;U′

(b) E :: u1, u2, i; Θ; Σ; ΓL; Γ; ∆ `Φ c : η, ∀ u, uB , uE ,
ι s.t. u ≤ uB ≤ uE , let γ1 = [uB , uE , ι/u1, u2, i] ∀θ ∈
RT [[Θ]], ∀γL ∈ [[ΓL]], ∀T , ∀n, γ, (n; γ) ∈ RG(Φ)[[Γγ1γ

L]]θ;T ;u,
T � ∆γγ1γ

L implies (n; cγ) ∈ RC(Φ)[[ηγγ1γ
L]]θ;T ;uB ,uE ,ι

2. (a) E :: u : b; Θ; Σ; ΓL; Γ; ∆ ` e : τ , ∀θ ∈ RT [[Θ]],
∀γL ∈ [[ΓL]], ∀U,U ′, U ′ ≥ U , let γu = [U/u], ∀T ,
∀Φ, ∀n, γ, (n; γ) ∈ RG(Φ)[[Γγuγ

L]]θ;T ;U′ , T � ∆γγuγ
L

implies (n; eγ) ∈ RE(Φ)[[τγγuγ
L]]θ;T ;U′

(b) E :: u1, u2, i; Θ; Σ; ΓL; Γ; ∆ ` c : η, ∀ u, uB , uE ,
ι s.t. u ≤ uB ≤ uE , let γ1 = [uB , uE , ι/u1, u2, i]
∀θ ∈ RT [[Θ]], ∀γL ∈ [[ΓL]], ∀T , ∀Φ, ∀n, γ, (n; γ) ∈
RG(Φ)[[Γγ1γ

L]]θ;T ;u, T � ∆γγ1γ
L implies (n; cγ) ∈

RC(Φ)[[ηγγ1γ
L]]θ;T ;uB ,uE ,ι

(c) E :: Θ; Σ; ΓL; Γ; ∆ ` ϕ true, ∀θ ∈ RT [[Θ]], ∀γL ∈
[[ΓL]], ∀T , ∀Φ, ∀n, γ, u, (n; γ) ∈ RG(Φ)[[ΓγL]]θ;T ;u, T �
∆γLγ implies T � ϕγLγ

We prove the soundness theorem by induction on typing deriva-
tions and a subinduction on step-indices for the case of fixpoints.

The proof of soundness of the rule CONFINE (2.(a)) first uses
Lemma 1 to show that a substitution γ for Γ, where γ maps each
variable in Γ to the type interpretation of Γ(x) is also a substitution
where γ(x) belongs to the interpretation of the invariant. Then we
use Lemma 2 to show that the untyped term eγ belongs to the
interpretation of the invariant. Applying Lemma 1 again, we can
show that eγ is in the interpretation of τ . The confine relations in
the premises are key to this proof. The proof of the rule CONF-SUB
uses the induction hypothesis directly: a derivation with an empty
qualifier can pick substitutions with any invariant ϕ.

To prove the soundness of HONEST, we need to show that given
any substitution (n, γ) for Γ, the trace satisfies the invariant of c.
From the last premise of HONEST, we know that c starts with an
empty stack. c can never return because there is no frame to be
popped off the empty stack. Therefore, at any time point after c
starts, the invariant of c should hold. However, the length of the
trace after c starts, denoted m, is not related to n. To use the
induction hypothesis, we need to use substitution (m, γ) for Γ.
Because Γ is empty, we complete the proof by using the induction
hypothesis on the first premise given an empty substitution (m, ·).

An immediate corollary of the soundness theorem is the follow-
ing robust safety theorem, which states that the invariant assertion
of a computation c’s postcondition holds even when c executes con-
currently with other threads, including those that are adversarial.

10 2014/7/22

The theorem holds because we account for adversarial actions in
the definition of RC(ub.ue.i.ϕ)[[η]]θ;∆;Ξ. A similar theorem holds
for partial correctness assertions.

Theorem 4 (Robust safety). If
• u1, u2, i; ∆ ` c : ϕ, T � ∆,
• T is a trace obtained by executing the parallel composition of

threads of ID (ι1, .. ιk),
• at time Ub, the computation that thread ιj is about to run is c
• at time Ue, c has not returned

then T � ϕ[Ub, Ue, ιj/u1, u2, i].

6. Discussion
Proving non-stuckness We can use System M’s invariant asser-
tions to verify that a program always remains non-stuck. Recall
the example from Section 5.3. We can prove non-stuckness for a
computation c by showing that it has the invariant postcondition
(¬stuck i)@(ub, ue]. To complete such a proof, we would require
that all action types assert non-stuckness in their postconditions un-
der appropriate assumptions on the past trace. For instance, the first
example in Section 5.3 states that we can assert non-stuckness in
the postcondition of the read action, if the memory location being
read has been allocated.

Choice of reduction strategy System M uses call-by-name β-
reduction for expressions, which simplies the operational semantics
as well as the soundness proofs. Other evaluation strategies we have
considered force us to use β-equality in place of syntactic equality
in EQ. This makes the system design, semantics, and soundness
proofs very complicated. In particular, the EQ rule that uses β-
equality cannot be proven sound in a model where expressions are
indexed by their reduction steps.

7. Related Work

Hoare Type Theory (HTT) In HTT [21–23], a monad classifies
effectful computations, and is indexed by the return type, a pre-
condition over the (initial) heap, and a postcondition over the ini-
tial and final heaps. This allows proofs of functional correctness of
higher-order imperative programs. The monad in System M is mo-
tivated by, and similar to, HTT’s monad. However, there are several
differences between System M’s monad and HTT’s monad. A Sys-
tem M postcondition is a predicate over the entire execution trace,
not just the initial and final heaps as in HTT. It also includes an in-
variant assertion which holds even if the computation does not re-
turn. This change is needed because we wish to prove safety prop-
erties, not just properties of heaps. Although moving from predi-
cates over heaps to predicates over traces in a sequential language
is not very difficult, our development is complicated because we
wish to reason about robust safety, where adversarial, potentially
untyped code interacts with trusted code. Hence, we additionally
incorporate techniques to reason about untyped code (rules EQ and
CONFINE). We also exclude standard Hoare pre-conditions from
computation types. Usually, pre-conditions ensure that well-typed
programs do not get stuck. We argued in Section 6 that in Sys-
tem M this property can be established for individual programs us-
ing only invariant postconditions. The standard realizability seman-
tics of HTT [29] are based on a model of CPOs, whereas our model
is syntactic and step-indexed [2].

RHTT [24] is a relational extension of HTT used to reason about
access and information flow properties of programs. That extension
to HTT is largely orthogonal to ours and the two could potentially
be combined into a larger framework with capabilities of both.
The properties that can be proved with RHTT and System M are
different. System M can verify safety properties in the presence of

untyped adversaries; RHTT verifies relational, non-trace properties
assuming fully typed adversaries.

LS2 and PCL System M is inspired by and based upon a prior
program logic, LS2, for reasoning about safety properties of first-
order order programs in the presence of adversaries [14]. The main
conceptual difference from LS2 is that in System M trusted and un-
trusted components may exchange code and data, whereas in LS2

this interface is limited to data. Our CONFINE rule for establishing
invariants of an unknown expression from invariants of interfaces
it has access to is based on a similar rule called RES in LS2. The
difference is that System M’s rule allows typing higher-order ex-
pressions, which makes it more complex, e.g., we must index the
typing derivations with invariants and define interpretations for in-
variants based on step-indexing programs to obtain soundness. LS2

itself is based on a logic for reasoning about Trusted Computing
Platforms [10] and Protocol Composition Logic (PCL) for reason-
ing about safety properties of cryptographic protocols [9].

Rely-guarantee reasoning There are two broad kinds of tech-
niques to prove invariants over state shared by concurrent pro-
grams. Coarse-grained reasoning followed in, e.g., Concurrent
Separation Logic (CSL) [6] and the concurrent version of HTT [23],
assumes clearly marked critical regions and allows programs to vi-
olate invariants on shared state only within them. This assumes
that resource contention is properly synchronized, which is gener-
ally unrealistic when executing concurrently with an unspecified
adversary. In contrast, fine-grained reasoning followed in, e.g.,
the method of Owicki-Gries [26] and its successor, rely-guarantee
reasoning [17], makes no synchronization assumption, but has a
higher proof burden at each individual step of a computation. In
proofs with System M, including the Memoir example in this pa-
per, we use a template for rely-guarantee reasoning taken from
LS2. The methods used to prove invariants within this template are
different because of the new higher-order setting.

Type systems that reason about adversary-supplied code The
idea of using a non-informative type, any, for typing expressions
obtained from untrusted sources goes back to the work of Abadi [1].
Gordon and Jeffrey develop a very widely used proof technique
for proving robust safety based on this type [15]. In their system,
any program can be syntactically given the type any by typing all
subexpressions of the program any. Although System M’s use of
the any type is similar, our proof technique for robust safety is
different. It is semantic and based on that in PCL—we allow for
arbitrary adversarial interleaving actions in the semantics of our
computation types (relation RC(Φ)[[η]]θ;T ;Ξ in Section 5.2). Due
to this generalized semantic definition, robust safety (Theorem 4)
is again a trivial consequence of soundness (Theorem 3).

Several type systems for establishing different kinds of safety
properties build directly or indirectly on the work of Abadi [1] and
Gordon and Jeffrey [15]. Of these, the most recent and advanced are
RCF [3] and its extensions [4, 31]. RCF is based on types refined
with logical assertions, which provide roughly the same expressive-
ness as System M’s dependently-typed computation types. By de-
sign, RCF’s notion of trace is monotonic: the trace is an unordered
set of actions (programmer specified ghost annotations) that have
occurred in the past [13]. This simplified design choice allows scal-
able implementation. On the other hand, there are safety properties
of interest that rely on the order of past events and, hence, cannot be
directly represented in RCF’s limited model of traces. An example
of this kind is measurement integrity in attestation protocols [10,
Theorems 2 & 4]. In contrast to RCF, we designed System M for
verification of general safety properties (so the measurement in-
tegrity property can be expressed and verified in System M), but
we have not considered automation for System M so far.

11 2014/7/22

F? [31] extends F7 with quantified types, a rich kinding system,
concrete refinements and several other features taken from the lan-
guage Fine [30]. This allows verification of stateful authorization
and information flow properties in F?. Quantified predicates can
also be used for full functional specifications of higher-order pro-
grams. Although we have not considered these applications so far,
we believe that System M can be extended similarly.

The main novelty of System M compared to the above men-
tioned line of work lies in the EQ and CONFINE rules that statically
derive computational effects of untyped adversary-supplied code.

Code-Carrying Authorization (CCA) [20] is another extension
to [15] that enforces authorization policies. CCA introduces dy-
namic type casts to allow untrusted code to construct authoriza-
tion proofs (e.g., Alice can review paper number 10). The language
runtime uses logical assertions made by trusted programs to con-
structs proofs present in the type cast. The soundness of type cast in
CCA relies on the fact that untrusted code cannot make any asser-
tions and that it can only use those made by trusted code. Similar
to CCA, System M also assigns untrusted code descriptive types.
CCA checks those types at runtime; whereas the CONFINE rule as-
signs types statically.

Verification of TPM and Protocols based on TPM Existing work
on verification of TPM APIs and protocols relying on TPM APIs
uses a variety of techniques [7, 10–12, 16]. Gurgens et al. uses au-
tomaton to model the transitions of TPM APIs [16]. Several re-
sults [7, 11, 12] use the automated tool Proverif [5]. Proverif trans-
lates protocols encoded in Pi calculus into horn clauses. To check
security properties such as secrecy and correspondence, the tool
runs a resolution engine on these horn clauses and clauses repre-
senting an Dolev-Yao attacker. Proverif over-approximates the pro-
tocol states and works with a monotonic set of facts. Special tech-
niques need to be applied to use Proverif to analyze stateful proto-
cols such as ones that use TPM PCRs [12]. System M is more ex-
pressive: it can model and reason about higher-order functions and
programs that invoke adversary-supplied code. Reasoning about
shared non-monotonic state is possible in System M. However,
verification using System M requires manual proofs. It is unclear
whether our Memoir case study can be verified using the techniques
introduced in [12], as it requires reasoning about higher-order code.

A proof of safety formalized in TLA+ [19] was presented
in the Memoir paper [28]. They showed that Memoir’s design
refines an obviously safe specification that cannot be rolled back
thus implying the state integrity property we prove. However, this
proof assumes that the service being protected is a constant action
with no effects. Consequently, they do not need to reason about
the service program being changed or causing unsafe effects. Our
proofs assume a more realistic model requiring that the identity of
the service be proven and that the effects of the service be analyzed
based on the sandbox provided by the TPM.

8. Conclusion
System M is a program logic for proving safety properties of pro-
grams that may execute adversary-supplied code with some pre-
cautions. System M generalizes Hoare Type Theory with invariant
assertions, and adds two novel typing rules—EQ and CONFINE—
that allow typing adversarial code using reasoning in the assertion
logic and assumptions about the code’s sandbox, respectively. We
prove soundness and robust safety relative to a step-indexed, trace
model of computations. Going further, we would like to build tools
for proof verification and automatic deduction in System M.

References
[1] M. Abadi. Secrecy by typing in security protocols. Journal of the

ACM, 46(5), 1999.

[2] A. Ahmed. Step-indexed syntactic logical relations for recursive and
quantified types. In Proc. ESOP, 2006.

[3] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis.
Refinement types for secure implementations. TOPLAS, 33(2):8:1–
8:45, 2011.

[4] K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of
security protocol code by typing. In Proc. POPL, 2010.

[5] B. Blanchet. Using Horn clauses for analyzing security protocols. In
V. Cortier and S. Kremer, editors, Formal Models and Techniques for
Analyzing Security Protocols, volume 5 of Cryptology and Informa-
tion Security Series, pages 86–112. IOS Press, Mar. 2011.

[6] S. Brookes. A semantics for concurrent separation logic. Theoretical
Computer Science, 375(1-3):227–270, 2007.

[7] L. Chen and M. Ryan. Attack, solution and verification for shared
authorisation data in TCG TPM. In Proc. FAST’09, 2010.

[8] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation
system and compositional logic for security protocols. Journal of
Computer Security, 13(3):423–482, 2005.

[9] A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol Composition
Logic (PCL). Electronic Notes in Theoretical Computer Science, 172:
311–358, 2007. ISSN 1571-0661.

[10] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A logic of secure
systems and its application to trusted computing. In Proc. IEEE S&P,
2009.

[11] S. Delaune, S. Kremer, M. D. Ryan, and G. Steel. A formal analysis
of authentication in the TPM. In Proc. FAST’10, 2011.

[12] S. Delaune, S. Kremer, M. D. Ryan, and G. Steel. Formal analysis of
protocols based on TPM state registers. In Proc. CSF’11, 2011.

[13] C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for
authorization policies. TOPLAS, 29(5), 2007.

[14] D. Garg, J. Franklin, D. Kaynar, and A. Datta. Compositional system
security in the presence of interface-confined adversaries. Electronic
Notes in Theoretical Computer Science, 265:49–71, 2010.

[15] A. D. Gordon and A. Jeffrey. Authenticity by typing for security
protocols. Journal of Computer Security, 11(4):451–519, July 2003.

[16] S. Gürgens, C. Rudolph, D. Scheuermann, M. Atts, and R. Plaga. Se-
curity evaluation of scenarios based on the TCG’s TPM specification.
In Proc. ESORICS’07, 2007.

[17] C. B. Jones. Tentative steps toward a development method for inter-
fering programs. TOPLAS, 5(4):596–619, 1983.

[18] L. Lamport. Proving the correctness of multiprocess programs. IEEE
Trans. Software Eng., 3(2):125–143, 1977.

[19] L. Lamport. Specifying Systems: The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002. ISBN 032114306X.

[20] S. Maffeis, M. Abadi, C. Fournet, and A. D. Gordon. Code-carrying
authorization. In Proc. ESORICS ’08, 2008.

[21] A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract
predicates and mutable ADTs in Hoare type theory. In Proc. ESOP’07,
2007.

[22] A. Nanevski, G. Morrisett, and L. Birkedal. Hoare type theory, poly-
morphism and separation. Journal of Functional Programming, 18
(5&6):865–911, 2008.

[23] A. Nanevski, P. Govereau, and G. Morrisett. Towards type-theoretic
semantics for transactional concurrency. In Proc. TLDI’09, 2009.

[24] A. Nanevski, A. Banerjee, and D. Garg. Verification of information
flow and access control policies via dependent types. In Proc. IEEE
S&P, 2011.

[25] G. C. Necula. Proof-carrying code. In Proc. POPL, 1997.

[26] S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs I. Acta Informatica, 6:319–340, 1976.

[27] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping trust in com-
modity computers. In Proc. S&P, pages 414–429, 2010.

12 2014/7/22

[28] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M. McCune.
Memoir: Practical state continuity for protected modules. In Proc.
IEEE S&P, 2011.

[29] R. L. Petersen, L. Birkedal, A. Nanevski, and G. Morrisett. A realiz-
ability model for impredicative Hoare type theory. In Proc. ESOP’08,
2008.

[30] N. Swamy, J. Chen, and R. Chugh. Enforcing stateful authorization
and information flow policies in fine. In Proc. ESOP, 2010.

[31] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.
Secure distributed programming with value-dependent types. In Proc.
ICFP, 2011.

[32] TrustedComputingGroup. TPM library specification. http:
//www.trustedcomputinggroup.org/resources/tpm_
library_specification.

A. Term Language and Operational Semantics
Syntax

Base values bv ::= tt | ff | ι | ` | n
Expressions e ::= x | bv | λx.e | ΛX.e

| e1 e2 | e · | comp(c)
Actions a ::= A | a e | a ·
Computations c ::= act(a) | ret(e) | fix f(x).c | c e

| letc(c1, x.c2) | lete(e1, x.c2)
| c1; c2 | e1; c2
| if e then c1 else c2

Expr types τ ::= X | b | Πx:τ1.τ2 | ∀X.τ | comp(ηc) | any
Comp types η ::= x:τ.ϕ | ϕ | (x:τ.ϕ, ϕ′)
Closed c types ηc ::= u1.u2.i.(x:τ.ϕ1, ϕ2)

| Πx:τ.u1.u2.i.(y:τ.ϕ1, ϕ2)
Assertions ϕ ::= P | e1 ≡ e2 | ϕ e | > | ⊥ | ¬ϕ

| ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∀x:τ.ϕ | ∃x:τ.ϕ

Action Kinds α ::= Act(ηc) | Πx:τ.α | ∀X.α
Type var ctx Θ ::= · | Θ, X
Signatures Σ ::= · | Σ, A :: α
Logic var ctx ΓL ::= · | ΓL, x : b | ΓL, x : any
Typing ctx Γ ::= · | Γ, x : τ
Formula ctx ∆ ::= · |∆, ϕ
Exec ctx Ξ ::= ub : b, ue : b, i : b

Beta reductions We define the β-reduction rules below.
e→β e

′

(λx.e) e2 →β e[e2/x] ΛX.e · →β e

e1 →β e
′
1

e1 e2 →β e
′
1 e2

e1 →β e
′
1

e1 · →β e
′
1 ·

σ . T ↪→ σ′ . T ′

next(σ, a) = (σ′, e) e 6= stuck

σ . 〈ι;x.c :: K; act(a)〉 ↪→ σ′ . 〈ι;K; c[e/x]〉
R-ACTS

next(σ, a) = (σ′, stuck)

σ . 〈ι;x.c :: K; act(a)〉 ↪→ σ′ . 〈ι; stuck〉
R-ACTF

σ . 〈ι; stuck〉 ↪→ σ . 〈ι; stuck〉 R-STUCK

σ . 〈ι;x.c :: K; ret(e)〉 ↪→ σ . 〈ι;K; c[e/x]〉 R-RET

σ . 〈ι;K; lete(e1, x.c2)〉 ↪→ σ . 〈ι;x.c2 BK; e1〉
R-SEQE1

e→β e
′

σ . 〈ι;K; e〉 ↪→β σ . 〈ι;K; e′〉
R-SEQE2

σ . 〈ι;x.c2 :: K; comp(c1)〉 ↪→ σ . 〈ι;x.c2 :: K; c1〉
R-SEQE3

σ . 〈ι;K; letc(c1, x.c2)〉 ↪→ σ . 〈ι;x.c2 :: K; c1〉
R-SEQC

σ . 〈ι;K; (fixf(x).c) e〉
↪→ σ . 〈ι;K; c[λz.comp(fix(f(x).c) z)/f][e/x]〉

R-FIX

C −→ C′

σ . T ↪→ σ′ . T ′

σ . T, T1, . . . , Tn −→ σ′ . T ′, T1, . . . , Tn

B. Well-formedness Judgments
Well-formedness judgments for contexts and types

Θ ` Σ ok

Θ ` · ok

Θ ` Σ ok Θ; Σ; · ` α ok

Θ ` Σ, A :: α ok

Θ; Σ ` Γ ok

Θ ` Σ ok

Θ; Σ ` · ok

Θ; Σ ` Γ ok Θ; Σ; Γ ` τ ok

Θ; Σ ` Γ, x : τ ok

Θ; Σ; Γ ` ∆ ok

Θ; Σ ` Γ ok

Θ; Σ; Γ ` · ok

Θ; Σ; Γ ` ∆ ok Γ ` ϕ ok

Θ; Σ,Γ ` ∆, ϕ ok

Γ ` ϕ ok

Γ ` P ok

Γ ` ϕ ok fv(e) ∈ dom(Γ)

Γ ` ϕ e ok

Γ ` > ok Γ ` ⊥ ok

Γ ` ϕ1 ok Γ ` ϕ2 ok

Γ ` ϕ1 ∧ ϕ2 ok

Γ ` ϕ1 ok Γ ` ϕ2 ok

Γ ` ϕ1 ∨ ϕ2 ok

Γ ` ϕ ok

Γ ` ¬ϕ ok

τ = b or any Γ, x : τ ` ϕ ok

Γ ` ∀x:τ.ϕ ok

τ = b or any Γ, x : τ ` ϕ ok

Γ ` ∃x:τ.ϕ ok

fv(e1) ∪ fv(e2) ⊆ dom(Γ)

Γ ` e1 ≡ e2 ok

13 2014/7/22

Θ; Σ; Γ ` τ ok

X ∈ Θ Θ; Σ ` Γ ok

Θ; Σ; Γ ` X ok

Θ; Σ; Γ ` τ1 ok Θ; Σ; Γ, x : τ1 ` τ2 ok

Θ; Σ; Γ ` Πx:τ1.τ2 ok

Θ; Σ; Γ ` ηc ok

Θ; Σ; Γ ` comp(ηc) ok

Θ; Σ ` Γ ok

Θ; Σ; Γ ` b ok

Θ, X; Σ; Γ ` τ ok

Θ; Σ; Γ ` ∀X.τ ok

Θ; Σ ` Γ ok

Θ; Σ; Γ ` any ok

Θ; Σ; Γ ` α ok

Θ; Σ; Γ ` ηc ok

Θ; Σ; Γ ` Act(ηc) ok

Θ; Σ; Γ ` τ ok Θ; Σ; Γ, x : τ ` α ok

Θ; Σ; Γ ` Πx:τ.α ok

Θ, X; Σ; Γ ` α ok

Θ; Σ; Γ ` ∀X.α ok

Θ; Σ; Γ ` ηc ok

Θ; Σ; Γ, u1:b, u2:b, i:b ` τ ok
Γ, u1:b, u2:b, i:b, x : τ ` ϕ1 ok Γ, u1:b, u2:b, i:b ` ϕ2 ok

Θ; Σ; Γ ` u1.u2.i.(x:τ.ϕ1, ϕ2) ok

Θ; Σ; Γ ` τ ok Θ; Σ; Γ, y : τ ` u1.u2.i.(x:τ1.ϕ1, ϕ2) ok

Θ; Σ; Γ ` Πy:τ.u1.u2.i.(x:τ1.ϕ1, ϕ2) ok

C. Typing Rules
Typing for simple terms Γ `e e : τ

x : τ ∈ Γ

Γ ` x : τ

Γ, x : τ1 ` e : τ2

Θ; Υ ` λx.e : Πx:τ1.τ2

Γ ` e1 : Πx:τ1.τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2 Γ ` e : any

Confine relation

confine (b) (ub.ue.i.ϕ)

confine (τ1) (ub.ue.i.ϕ) confine (τ2) (ub.ue.i.ϕ)

confine (Π :τ1.τ2) (ub.ue.i.ϕ)

confine (τ) (ub.ue.i.ϕ)

confine (comp(ub.ue.i.(x:τ.ϕ, ϕ))) (ub.ue.i.ϕ)

Typing rules for expressions

u; Θ; Σ; ΓL; Γ; ∆ ` e : τ

Θ; Σ;u,ΓL; Γ ` ∆ ok x : τ ∈ Γ

u; Θ; Σ; ΓL; Γ; ∆ ` x : τ
E-VAR

Θ; Σ; ΓL, u,Γ ` ∆ ok fv(e) ⊆ dom(Γ)

u; Θ; Σ; ΓL; Γ; ∆ ` e : any
UN

Θ; Σ; ΓL, u,Γ ` ∆ ok

u; Θ; Σ; ΓL; Γ; ∆ ` bv : b
E-BASEVAL

Θ; Σ; ΓL, u,Γ ` τ1 ok

u; Θ; Σ; ΓL; Γ, x : τ1; ∆ `Q e : τ2

u; Θ; Σ; ΓL; Γ; ∆ `Q λx.e : Πx:τ1.τ2
E-FUN

u; Θ; Σ; ΓL; Γ; ∆ `Q e1 : Πx:τ1.τ2
u; Θ; Σ; ΓL; Γ; ∆ `Q e2 : τ1

u; Θ; Σ; ΓL; Γ; ∆ `Q e1 e2 : τ2[e2/x]
E-APP

u; Θ, X; Σ; ΓL; Γ; ∆ `Q e : τ

u; Θ; Σ; ΓL; Γ; ∆ `Q ΛX.e : ∀X.τ
E-TFUN

u; Θ; Σ; ΓL; Γ; ∆ `Q e : ∀X.τ1
Θ; Σ; ΓL, u,Γ ` τ ok

u; Θ; Σ; ΓL; Γ; ∆ `Q e · : τ1[τ/X]
E-TAPP

u; Θ; Σ; ΓL; Γ; ∆ `Q e : τ

Θ; Σ; ΓL, u; Γ; ∆ ` e ≡ e′ true fv(e′) ⊆ dom(Γ)

u; Θ; Σ; ΓL; Γ; ∆ `Q e′ : τ
EQ

ϕ is trace composable
ub, ue, i; Θ; Σ; ΓL, u; Γ; ∆ ` ϕ silent

ub:b, ue:b, i:b ` ϕ ok fa(e) = ∅ fv(e) ⊆ Γ
confine (τ) (ub.ue.i.ϕ) confine (Γ) (ub.ue.i.ϕ)

u; Θ; Σ; ΓL; Γ; ∆ `ub.ue.i.ϕ e : τ
CONFINE

u; Θ; Σ; ΓL; Γ; ∆ ` e : τ ub:b, ue:b, i:b ` ϕ ok

u; Θ; Σ; ΓL; Γ; ∆ `ub.ue.i.ϕ e : τ
CONF-SUB

u1, u2, i; Θ; Σ; ΓL;ue,Γ; ∆, u1 ≥ ue `Q c : (x:τ.ϕ1, ϕ2)

Θ; Σ; ΓL, ue:b, u1:b, u2:b, i:b; Γ, x : τ ; ∆ ` ϕ1 ⇒ ϕ′1 true

Θ; Σ; ΓL, ue:b, u1:b, u2:b, i:b; Γ; ∆ ` ϕ2 ⇒ ϕ′2 true

Θ; Σ; ΓL, ue:b; Γ ` u1.u2.i.(x:τ.ϕ′1, ϕ
′
2) ok

fv(c) ⊆ dom(Γ)

ue; Θ; Σ; ΓL; Γ; ∆ `Q comp(c) : comp(u1.u2.i.(x:τ.ϕ′1, ϕ
′
2))

COMP

Typing rules for silent threads

Ξ; Θ; Σ; ΓL; Γ; ∆ ` ϕ silent

Θ; Σ; ΓL; Ξ,Γ; ∆ ` ϕ true ΓL,Ξ,Γ ` ϕ ok

Ξ; Θ; Σ; ΓL; Γ; ∆ ` ϕ silent
SILENT

Typing rules for actions

14 2014/7/22

u : b; Θ; Σ; ΓL; Γ; ∆ `Q a :: α

Θ; Σ; ΓL, u : b; Γ ` ∆ ok A :: α ∈ Σ

u : b; Θ; Σ; ΓL; Γ; ∆ ` A :: α

u : b; Θ; Σ; ΓL; Γ; ∆ `Q a :: Πx:τ.α

u : b; Θ; Σ; ΓL; Γ; ∆ `Q e : τ

u : b; Θ; Σ; ΓL; Γ; ∆ `Q a e :: α[e/x]

u : b; Θ; Σ; ΓL; Γ; ∆ `Q a :: ∀X.α
Θ; Σ; ΓL, u : b,Γ ` τ ok

u : b; Θ; Σ; ΓL; Γ; ∆ `Q a · :: α[τ/X]

Logical reasoning rules

Θ; Σ; ΓL; Γ; ∆ ` ϕ true

u1, u2, i; Θ; Σ; ΓL; ·; ∆ ` c : ϕ

Θ; Σ; ΓL; ·; ∆ ` start(I, c, u) true

Θ; Σ ` ΓL,Γ ok

Θ; Σ; ΓL; Γ; ∆ ` ∀u′:b.(u′>u)⇒ ϕ[u, u′, I/u1, u2, i] true
HONEST

Θ; Σ; ΓL; Γ; ∆1 ` ϕ true

Θ; Σ; ΓL; Γ; ∆1, ϕ,∆2 ` ϕ′ true

Θ; Σ; ΓL; Γ; ∆1,∆2 ` ϕ′ true
CUT

Θ; Σ; ΓL,Γ ` ∆ ok ϕ ∈ ∆

Θ; Σ; ΓL; Γ; ∆ ` ϕ true
INIT

Θ; Σ; ΓL; Γ; ∆1, ϕ,∆2 ` ·
Θ; Σ; ΓL; Γ; ∆1,∆2 ` ¬ϕ true

¬I

Θ; Σ; ΓL; Γ; ∆ ` ¬ϕ true

Θ; Σ; ΓL; Γ; ∆, ϕ ` ·
¬E

Θ; Σ; ΓL; Γ; ∆ ` ϕ1 true Θ; Σ; ΓL; Γ; ∆ ` ϕ2 true

Θ; Σ; ΓL; Γ; ∆ ` ϕ1 ∧ ϕ2 true
∧I

i ∈ [1, 2],Θ; Σ; ΓL; Γ; ∆ ` ϕ1 ∧ ϕ2 true

Θ; Σ; ΓL; Γ; ∆ ` ϕi true
∧E

i ∈ [1, 2],Θ; Σ; ΓL; Γ; ∆ ` ϕi true

Θ; Σ; ΓL; Γ; ∆ ` ϕ1 ∨ ϕ2 true
∨I

Θ; Σ; ΓL; Γ; ∆ ` ϕ1 ∨ ϕ2 true

Θ; Σ; ΓL; Γ; ∆, ϕ1,Γ
′ ` ϕ true

Θ; Σ; ΓL; Γ; ∆, ϕ2,Γ
′ ` ϕ true

Θ; Σ; ΓL; Γ; ∆,Γ′ ` ϕ true
∨E

Θ; Σ; ΓL, x : τ ; Γ; ∆ ` ϕ true

Θ; Σ; ΓL; Γ; ∆ ` ∀x:τ.ϕ true
∀I

Θ; Σ; ΓL; Γ; ∆ ` ∀x:τ.ϕ true ΓL ` t : τ

Θ; Σ; ΓL; Γ; ∆ ` ϕ[t/x] true
∀E

Θ; Σ; ΓL; Γ; ∆ ` ϕ[t/x] true ΓL ` t : τ

Θ; Σ; ΓL; Γ; ∆ ` ∃x:τ.ϕ true
∃I

Θ; Σ; ΓL; Γ; ∆ ` ∃x:τ.ϕ true

Θ; Σ; ΓL, a:τ ; Γ; ∆, ϕ[a/x] ` ϕ′ true a /∈ fv(ϕ′)

Θ; Σ; ΓL; Γ; ∆ ` ϕ′ true
∃E

Typing rules for computations We summarize the typing rules
for computations in Figures 8 and 9.

D. Semantics
Semantics for invariant properties Next we define a logical rela-
tion indexed only by an invariant property ub.ue.i.ϕ.

RV INV[[ub.ue.i.ϕ]]T ;u = {(k, nf) | nf 6= λx.e,ΛX.e, comp(c)}
∪{(k, comp(c)) | (k, c) ∈ RCINV[[ub.ue.i.ϕ]]T ;u}
∪{(k, λx.e′) | ∀j, u′, j < k, u′ ≥ u

(j, e′) ∈ RE INV[[ub.ue.i.ϕ]]T ;u′

=⇒ (j, e[e′/x]) ∈ RE INV[[ub.ue.i.ϕ]]T ;u′}
∪ {(k,Λx.e) | ∀j, j < k =⇒ (j, e) ∈ RE INV[[ub.ue.i.ϕ]]T ;u}

RE INV[[ub.ue.i.ϕ]]T ;u=
{(k, e) |∀0 ≤ m ≤ k, e→m e′ 9

=⇒ (n−m, e′) ∈ RV INV[[ub.ue.i.ϕ]]T ;u}

RCINV[[ub.ue.i.ϕ]]T ;u = {(k, c) |
∀uB , uE , ι, u ≤ uB ≤ uE , let γ = [uB , uE , ι/u1, u2, i],
jb is the length of the trace from time uB to the end of T ,
je is the length of the trace from time uE to the end of T
k ≥ jb ≥ je,
the configuration at time uB is

uB−−→ σb . · · · , 〈ι;x.c′ :: K; c〉 · · ·
between uB and uE (inclusive), the stack of thread i always
contains prefix x.c′::K
=⇒ T �θ ϕ}∩
{(k, c) | ∀uB , uE , ι, u ≤ uB ≤ uE ,

let γ = [uB , uE , ι/u1, u2, i],
jb is the length of the trace from time uB to the end of T
je is the length of the trace from time uE to the end of T
k ≥ jb > je,
the configuration at time u1 is

uB−−→ σb . · · · , 〈ι;x.c′ :: K; c〉 · · ·
the configuration at time uE is

uE−−→ σe . · · · , 〈ι;K; c′[e′/x]〉 · · ·
between uB and uE , the stack of thread i always contains x.c′::K
=⇒ (je, e

′) ∈ RE INV[[ub.ue.i.ϕ]]T ;uE and T �θ ϕ[e′/x]}

15 2014/7/22

Fixpoint u : b; Θ; Σ; ΓL; Γ; ∆ `Q c : η

Γ1 = y : τ, f : Πy:τ.comp(u1.u3.i.(x:τ1.ϕ, ϕ
′))

u1 : b, u2 : b, i : b; Θ; Σ; ΓL; Γ; ∆, u ≤ u1 ≤ u2 ` ϕ0 silent

u2, u3, i; Θ; Σ; ΓL, u1 : b, u : b; Γ,Γ1; ∆, u2 < u3, ϕ0 `Q c : x:τ1.ϕ1

u2, u3, i; Θ; Σ; ΓL;u1 : b, u : b; Γ,Γ1; ∆, u2 ≤ u3, ϕ0 `Q c : ϕ2

Θ; Σ; ΓL, u1 : b, u : b, u2 : b, u3 : b, i : b; Γ,Γ1, x : τ1; ∆ ` (ϕ0 ∧ ϕ1)⇒ ϕ true

Θ; Σ; ΓL, u1 : b, u2 : b, u3 : b, i : b, u : b; Γ,Γ1; ∆ ` (ϕ0 ∧ ϕ2 ⇒ ϕ′) true

Θ; Σ; ΓL, u1 : b, u3 : b, i : b, u : b; Γ, y : τ ; ∆ ` ϕ0[u3/u2]⇒ ϕ′ true

Θ; Σ; ΓL, u : b; Γ ` Πy:τ.u1.u3.i.(x:τ1.ϕ, ϕ
′) ok fv(fix(f(y).c)) ∈ dom(Γ)

u; Θ; Σ; ΓL; Γ; ∆ `Q fix(f(y).c) : Πy:τ.u1.u3.i.(x:τ1.ϕ, ϕ
′)

FIX

Partial correctness typing Ξ; Θ; Σ; ΓL; Γ; ∆ `Q c : η

u1 : b; Θ; Σ; ΓL, u2 : b, i : b; Γ; ∆ `Q c : Πy:τ.ub.ue.j.(x:τ ′.ϕ, ϕ′) u1 : b; Θ; Σ; ΓL, u2 : b, i : b; Γ; ∆ `Q e : τ

fv(c e) ⊆ dom(Γ) let γ = [u1, u2, i/ub, ue, j] Θ; Σ; ΓL,Γ ` u1.u2.i.((x:τ ′.ϕ)γ[e/y], ϕ′γ[e/y]) ok

u1 : b, u2 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q c e : ((x:τ ′γ.ϕγ)[e/y], ϕ′γ[e/y])
APP

u1 : b; Θ; Σ; ΓL, u2 : b, i : b; Γ; ∆ `Q a :: Act(ub.ue.j.(x:τ.ϕ1, ϕ2)) u1 : b, u2 : b, i : b; Θ; Σ; ΓL; Γ; ∆ ` ϕ silent

fv(a) ∈ dom(Γ) Θ; Σ; ΓL; Γ ` u1.u2.i.(x:τ.ϕ1[u1, u2, i/ub, ue, j], ϕ2[u1, u2, i/ub, ue, j] ∧ ϕ) ok

u1 : b, u2 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q act(a) : (x:τ.ϕ1[u1, u2, i/ub, ue, j], ϕ2[u1, u2, i/ub, ue, j] ∧ ϕ)
ACT

u0 : b, u1 : b, i : b; Θ; Σ; ΓL, u3 : b; Γ; ∆, u0 ≤ u1 ` ϕ0 silent

u1 : b; Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ; ∆, ϕ0 `Q e1 : comp(ub, ue, j.(x:τ.ϕ1, ϕ
′
1))

let γ = [u1, u2, i/ub, ue, j]

u2 : b, u3 : b, i : b; Θ; Σ; ΓL, u0 : b, u1 : b; Γ, x : τγ; ∆, u2 < u3, ϕ0, ϕ1γ `Q c2 : y:τ ′.ϕ2

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ, u1:b, u2:b, x:τγ, y : τ ′; ∆ ` (ϕ0 ∧ ϕ1γ ∧ ϕ2)⇒ ϕ true

fv(lete(e1, x.c2)) ⊆ dom(Γ) Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ, y : τ ′ ` ϕ ok

u0 : b, u3 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q lete(e1, x.c2) : y:τ ′.ϕ
SEQE

u0 : b, u1 : b, i : b; Θ; Σ; ΓL;u3 : b,Γ; ∆, u0 ≤ u1 ` ϕ0 silent

u1 : b, u2 : b, i : b; Θ; Σ; ΓL, u0 : b, u3 : b; Γ; ∆, u1 < u2, ϕ0 `Q c1 : x:τ.ϕ1

u2 : b, u3 : b, i : b; Θ; Σ; ΓL, u0 : b, u1 : b; Γ, x : τ ; ∆, u2 < u3, ϕ0, ϕ1 `Q c2 : y:τ ′.ϕ2

Θ; Σ; ΓL, u1:b, u2:b, u0 : b, u3 : b, i : b; Γ, x:τ, y : τ ′; ∆ ` (ϕ0 ∧ ϕ1 ∧ ϕ2)⇒ ϕ true

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ, y : τ ′ ` ϕ ok fv(letc(c1, x.c2)) ⊆ dom(Γ)

u0 : b, u3 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q letc(c1, x.c2) : y:τ ′.ϕ
SEQC

u2 : b; Θ; Σ; ΓL, u1 : b, i : b; Γ; ∆ `Q e : τ u1 : b, u2 : b, i : b; Θ; Σ; ΓL; Γ; ∆ ` ϕ silent fv(e) ⊆ dom(Γ)

u1 : b, u2 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q ret(e) : x:τ.((x ≡ e) ∧ ϕ)
RET

u0 : b, u1 : b, i : b; Θ; Σ; ΓL, u2 : b; Γ; ∆, u0 ≤ u1 ` ϕ0 silent

u0 : b; Θ; Σ; ΓL, u2 : b, i : b; Γ; ∆ `Q e : b u1 : b, u2 : b, i : b; Θ; Σ; ΓL, u0 : b; Γ; ∆, u1 < u2, ϕ0, (eval e tt) `Q c1 : x:τ.ϕ1

u1 : b, u2 : b, i : b; Θ; Σ; ΓL, u0 : b; Γ; ∆, u1 < u2, ϕ0, (eval e ff) `Q c2 : x:τ.ϕ2

Θ; Σ; ΓL, u0 : b, u2 : b, i : b; Γ, u1 : b, x : τ ; ∆ ` (ϕ0 ∧ ϕi)⇒ ϕ where i ∈ [1, 2]

Θ; Σ; ΓL, u0 : b, u2 : b, i : b; Γ, x : τ ` ϕ ok fv(e) ∪ fv(c1) ∪ fv(c2) ⊆ dom(Γ)

u0 : b, u2 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q if e then c1 else c2 : x:τ.ϕ
IF

Figure 8. Computation typing rules (1)

16 2014/7/22

Invariant typing Ξ; Θ; Σ; ΓL; Γ; ∆ `Q c : η

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ; ∆ ` ϕ ok

u0 : b, u1 : b, i : b; Θ; Σ; ΓL, u3 : b; Γ; ∆, u0 ≤ u1 ` ϕ0 silent u0 : b, u3 : b, i : b; Θ; Σ; ΓL; Γ; ∆, u0 ≤ u3 ` ϕ′0 silent

u1 : b; Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ; ∆, ϕ0 `Q e1 : comp(ub, ue, j.(x:τ.ϕ1, ϕ
′
1))

u2 : b, u3 : b, i : b; Θ; Σ; ΓL, u0 : b; Γ; ∆, u1 : b, x : τ ;u1 < u2 ≤ u3, ϕ0, ϕ1[u1, u2, i/ub, ue, j] `Q c2 : ϕ2

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ; ∆ ` ϕ′0 ⇒ ϕ true

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ, u1:b; ∆ ` ϕ0 ∧ ϕ′1[u1, u3, i/ub, ue, j]⇒ ϕ true

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ, u1:b, u2:b, x:τ ; ∆ ` (ϕ0 ∧ ϕ1[u1, u2, i/ub, ue, j] ∧ ϕ2)⇒ ϕ true
fv(lete(e1, x.c2)) ⊆ dom(Γ)

u0 : b, u3 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q lete(e1, x.c2) : ϕ
SEQEI

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ; ∆ ` ϕ ok

u0 : b, u1 : b, i : b; Θ; Σ; ΓL, u3 : b; Γ; ∆, u0 ≤ u1 ` ϕ0 silent u0 : b, u3 : b, i : b; Θ; Σ; ΓL; Γ; ∆, u0 ≤ u3 ` ϕ′0 silent

u1 : b, u2 : b, i : b; Θ; Σ; ΓL, u0 : b, u3 : b; Γ; ∆, u1 < u2, ϕ0 `Q c1 : x:τ.ϕ1

u1 : b, u3 : b, i : b; Θ; Σ; ΓL; Γ; ∆, u0 : b, u1 ≤ u3, ϕ0 `Q c1 : ϕ′1
u2 : b, u3 : b, i : b; Θ; Σ; ΓL; Γ; ∆, u0 : b, u1 : b, x : τ, u2 ≤ u3, ϕ0, ϕ1 `Q c2 : ϕ2

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ; ∆ ` ϕ′0 ⇒ ϕ true

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ, u1:b; ∆ ` (ϕ0 ∧ ϕ′1)⇒ ϕ true

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ, u1:b, u2:b, x:τ ; ∆ ` (ϕ0 ∧ ϕ1 ∧ ϕ2)⇒ ϕ true fv(letc(c1, x.c2)) ⊆ dom(Γ)

u0 : b, u3 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q letc(c1, x.c2) : ϕ
SEQCI

fv(e) ⊆ dom(Γ) u1 : b, u2 : b, i : b; Θ; Σ; ΓL; Γ; ∆ ` ϕ silent

u1 : b, u2 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q ret(e) : ϕ
RETI

Θ; Σ; ΓL, u0 : b, u2 : b, i : b; Γ; ∆ `Q e : b

u0 : b, u2 : b, i : b; Θ; Σ; ΓL; Γ; ∆, u1 ≤ u2 ` ϕ0 silent u0 : b, u1 : b, i : b; Θ; Σ; ΓL, u2 : b; Γ; ∆, u0 ≤ u1 ` ϕ′0 silent

u1 : b, u2 : b, i : b; Θ; Σ; ΓL, u0 : b; Γ; ∆, u1 ≤ u2, ϕ
′
0, (eval e tt) `Q c1 : ϕ1

u1 : b, u2 : b, i : b; Θ; Σ; ΓL, u0 : b; Γ; ∆, u1 ≤ u2, ϕ
′
0, (eval e ff) `Q c2 : ϕ2 Θ; Σ; ΓL, u0 : b, u2 : b, i : b; Γ; ∆ ` ϕ0 ⇒ ϕ

Θ; Σ; ΓL, u0 : b, u2 : b, i : b; Γ, u1 : b; ∆ ` (ϕ′0 ∧ ϕ1)⇒ ϕ Θ; Σ; ΓL, u0 : b, u2 : b, i : b; Γ, u1 : b; ∆ ` (ϕ′0 ∧ ϕ2)⇒ ϕ

Θ; Σ; ΓL, u0 : b, u2 : b, i : b; Γ; ∆ ` ϕ ok fv(e) ∪ fv(c1) ∪ fv(c2) ⊆ dom(Γ)

u0 : b, u2 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q if e then c1 else c2 : ϕ
IFI

u1 : b, u2 : b, i : b; Θ; Σ; ΓL; Γ; ∆, ϕ1 `Q c : ϕ2

u1 : b, u2 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q c : ϕ1 ⇒ ϕ2

IMPI

Misc

k ∈ [1, 2] u1, u2, i; Θ; Σ; ΓL; Γ; ∆ `Q c : (η1, η2)

u1, u2, i; Θ; Σ; ΓL; Γ; ∆ `Q c : ηk
PAIR

u1, u2, i; Θ; Σ; ΓL; Γ; ∆ `Q c : x:τ.ϕ1 u1, u2, i; Θ; Σ; ΓL; Γ; ∆ `Q c : ϕ2

u1, u2, i; Θ; Σ; ΓL; Γ; ∆ `Q c : (x:τ.ϕ1, ϕ2)
PROJ

Θ; Σ; ΓL,Ξ; Γ; ∆1 ` ϕ true Ξ; Θ; Σ; ΓL; Γ; ∆1, ϕ,∆2 `Q c : η

Ξ; Θ; Σ; ΓL; Γ; ∆1,∆2 `Q c : η
CUTC

Figure 9. Computation typing (2)

17 2014/7/22

u0 : b, u2 : b, i : b; Θ; Σ; ΓL, u3 : b; ·; ∆, u0 ≤ u1 ≤ u2 ` ϕ0 silent

u1 : b; Θ; Σ; ΓL, u0 : b, u2 : b, u3 : b, i : b; ·;ϕ0 `Q1 e1 : comp(ub, ue, j.(x:τ.ϕ1, ϕ
′
1))

let γ = [u1, u2, i/ub, ue, j]

u2, u3, i; Θ; Σ; ΓL, u0 : b, u1 : b; ·; ∆, u2 < u3, ϕ0, ϕ1γ `Q2 c2 : y:τ ′.ϕ2

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ, u1:b, u2:b, y : τ ′; ∆ ` (ϕ0 ∧ ϕ1γ ∧ ϕ2)⇒ ϕ true

Θ; Σ; ΓL, u0 : b, u3 : b, i : b,Γ, y : τ ′ ` ϕ ok

u0 : b, u3 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q2 (e1; c2) : y:τ ′.ϕ
SEQECOMP

u0 : b, u1 : b, i : b; Θ; Σ; ΓL, u3 : b; ·; ∆, u0 ≤ u1 ` ϕ0 silent

u1 : b, u2 : b, i : b; Θ; Σ; ΓL, u0 : b, u3 : b; ·;ϕ0 `Q c1 : x:τ.ϕ1

u2 : b, u3 : b, i : b; Θ; Σ; ΓL;u0 : b, u1 : b, ·; ∆, u2 < u3, ϕ0, ϕ1 `Q2 c2 : y:τ ′.ϕ2

Θ; Σ; ΓL;u0 : b, u3 : b, i : b; ·, u1:b, u2:b, y : τ ′; ∆ ` (ϕ0 ∧ ϕ1 ∧ ϕ2)⇒ ϕ true

Θ; Σ; ΓL;u0 : b, u3 : b, i : b,Γ, y : τ ′ ` ϕ ok

u0 : b, u3 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q2 (c1; c2) : y:τ ′.ϕ
SEQCCOMP

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ; ∆ ` ϕ ok u0 : b, u2 : b, i : b; Θ; Σ; ΓL, u3 : b; ·; ∆, u0 ≤ u1 ≤ u2 ` ϕ0 silent

u0 : b, u3 : b, i : b; Θ; Σ; ΓL; ·; ∆, u0 ≤ u3 ` ϕ′0 silent

u1 : b; Θ; Σ; ΓL, u0 : b, u2 : b, u3 : b, i : b; ·;ϕ0 `Q e1 : comp(ub, ue, j.(x:τ.ϕ1, ϕ
′
1))

u2 : b, u3 : b, i : b; Θ; Σ; ΓL, u0 : b; ·; ∆, u1 : b;u1 < u2 ≤ u3, ϕ0, ϕ1[u1, u2, i/ub, ue, j] `Q c2 : ϕ2

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ; ∆ ` ϕ′0 ⇒ ϕ true

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ, u1:b; ∆ ` ϕ0 ∧ ϕ′1[u1, u3, i/ub, ue, j]⇒ ϕ true

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ, u1:b, u2:b; ∆ ` (ϕ0 ∧ ϕ1[u1, u2, i/ub, ue, j] ∧ ϕ2)⇒ ϕ true

u0 : b, u3 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q (e1; c2) : ϕ
SEQEICOMP

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ; ∆ ` ϕ ok u0 : b, u1 : b, i : b; Θ; Σ; ΓL, u3 : b; ·; ∆, u0 ≤ u1 ` ϕ0 silent

u0 : b, u3 : b, i : b; Θ; Σ; ΓL; ·; ∆, u0 ≤ u3 ` ϕ′0 silent

u1 : b, u2 : b, i : b; Θ; Σ; ΓL, u0 : b, u3 : b; ·;ϕ0 `Q c1 : x:τ.ϕ1

u1 : b, u3 : b, i : b; Θ; Σ; ΓL; ·; ∆, u0 : b, u1 ≤ u3, ϕ0 `Q c1 : ϕ′1
u2 : b, u3 : b, i : b; Θ; Σ; ΓL; ·; ∆, u0 : b, u1 : b, x : τ, u2 ≤ u3, ϕ0, ϕ1 `Q c2 : ϕ2

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ; ∆ ` ϕ′0 ⇒ ϕ true

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ, u1:b; ∆ ` (ϕ0 ∧ ϕ′1)⇒ ϕ true

Θ; Σ; ΓL, u0 : b, u3 : b, i : b; Γ, u1:b, u2:b; ∆ ` (ϕ0 ∧ ϕ1 ∧ ϕ2)⇒ ϕ true

u0 : b, u3 : b, i : b; Θ; Σ; ΓL; Γ; ∆ `Q (c1; c2) : ϕ
SEQCICOMP

Figure 10. Sequential composition

RF INV[[ub.ue.i.ϕ]]T ;u =
{(k, c) | ∀e, (k, e) ∈ RE INV[[ub.ue.i.ϕ]]T ;u =⇒

(k, c e) ∈ RCINV[[ub.ue.i.ϕ]]T ;u}

Semantics for invariant indexed types Figure 11 summaries the
interpretation of types indexed by the invariant property ub.ue.i.ϕ.
The invariant property is used to constrain the behavior of expres-
sions that evaluate to normal forms that do not agree with their
types.

RC(ub.ue.i.ϕ1)[[x:τ.ϕ]]θ;T ;u1,u2,i = {(k, c) |
jb is the length of the trace from time u1 to the end of T
je is the length of the trace from time u2 to the end of T
k ≥ jb > je,
the configuration at time u1 is

u1−→ σb . · · · , 〈ι;x.c′ :: K; c〉 · · ·
the configuration at time u2 is

u2−→ σe . · · · , 〈ι;K; c′[e′/x]〉 · · ·
between u1 and u2, the stack of thread i always contains x.c′::K
=⇒ (je, e

′) ∈ RE(ub.ue.i.ϕ1)[[τ]]θ;T ;u2

and T � ϕ[e′/x]}

RC()[[ϕ]]θ;T ;u1,u2,i = {(k, c) |
jb is the length of the trace from time u1 to the end of T ,

je is the length of the trace from time u2 to the end of T
k ≥ jb ≥ je,
the configuration at time u1 is

u1−→ σb . · · · , 〈ι;x.c′ :: K; c〉 · · ·
between u1 and u2 (inclusive), the stack of thread i always
contains prefix x.c′::K
=⇒ T � ϕ}

RF(ub.ue.i.ϕ1)[[Πx:τ.u1.u2.i.(y:τ ′.ϕ, ϕ′)]]θ;T ;u =
{(k, c) | ∀e, ∀u′, uB , uE , ι, u ≤ u′ ≤ uB ≤ uE ,

let γ = [uB , uE , ι/u1, u2, i]
(k, e) ∈ RE(ub.ue.i.ϕ1)[[τγ]]θ;T ;u′ =⇒
(k, c e) ∈ RC(ub.ue.i.ϕ1)[[(y:τ ′γ.ϕγ)[e/x]]]θ;T ;uB ,uE ,ι

∩RC()[[ϕ′γ[e/x]]]θ;T ;uB ,uE ,ι}

RA(ub.ue.i.ϕ)[[Act(u1.u2.i.(x:τ.ϕ1, ϕ2))]]θ;T ;u =
{(k, a) | ∀uB , uE , ι, u ≤ uB ≤ uE ,

let γ = [uB , uE , ι/u1, u2, i]
(k, act(a)) ∈ (RC(ub.ue.i.ϕ)[[x:τγ.ϕ1γ]]θ;T ;u;uB ,uE ,ι

∩RC(ub.ue.i.ϕ)[[ϕ2γ]]θ;T ;u;uB ,uE ,ι)}

RA(ub.ue.i.ϕ)[[Πx:τ.α]]θ;T ;u =
{(k, a) | ∀e,∀u′, , u′ ≥ u, (k, e) ∈ RE(ub.ue.i.ϕ)[[τ]]θ;T ;u′

18 2014/7/22

RV(ub.ue.i.ϕ)[[any]]θ;T ;u = {(k, nf) | k ∈ N}
RV(ub.ue.i.ϕ)[[X]]θ;T ;u = θ(X)
RV(ub.ue.i.ϕ)[[b]]θ;T ;u = {(k, e) | (k, e) ∈ RV INV[[ub.ue.i.ϕ]]θ;T ;u}
RV(ub.ue.i.ϕ)[[Πx:τ1.τ2]]θ;T ;u = {(k, λx.e) | ∀j < k,∀u′, u′ ≥ u, ∀e′, (j, e′) ∈ RE(ub.ue.i.ϕ)[[τ1]]θ;T ;u′

=⇒ (j, e1[e′/x]) ∈ RE(ub.ue.i.ϕ)[[τ2[e′/x]]]θ;T ;u′}∪
{(k, nf) | nf 6= λx.e =⇒ (k, nf) ∈ RE INV[[ub.ue.i.ϕ]]T ;u}

RV(ub.ue.i.ϕ)[[∀X.τ]]θ;T ;u = {(k,ΛX) | ∀j < k,∀C ∈ Type =⇒ (j, e′) ∈ RE(ub.ue.i.ϕ)[[τ]]θ[X 7→C];T ;u}∪
{(k, nf) | nf 6= ΛX.e =⇒ (k, nf) ∈ RE INV[[ub.ue.i.ϕ]]T ;u}

RV(ub.ue.i.ϕ)[[comp(u1.u2.i.(x:τ.ϕ1, ϕ2))]]θ;T ;u =
{(k, comp(c)) | ∀uB , uE , ι, u ≤ uB ≤ uE , let γ = [uB , uE , ι/u1, u2, i]

(k, c) ∈ RC(ub.ue.i.ϕ)[[x:τγ.ϕ1γ]]θ;T ;uB ,uE ,ι ∩RC()[[ϕ2γ]]θ;T ;uB ,uE ,ι}∪
{(k, nf) | nf 6= comp(c) =⇒ (k, nf) ∈ RE INV[[u1.u2.i.ϕ]]T ;u}

RE(ub.ue.i.ϕ)[[τ]]θ;T ;u = {(k, e) | ∀j < m, e→m
β e′ 9=⇒ (k −m, e′) ∈ RV(ub.ue.i.ϕ)[[τ]]θ;T ;u}

Figure 11. Semantics for inv-indexed types

=⇒ (k, a e) ∈ RA(ub.ue.i.ϕ)[[α[e/x]]]θ;T ;u′}

RA(ub.ue.i.ϕ)[[∀X.α]]θ;T ;u =
{(k, a) | ∀j ≤ k, ∀C ∈ Type

=⇒ (j, a ·) ∈ RA(ub.ue.i.ϕ)[[α]]θ[X 7→C];T ;u}

Formula semantics
[[any]] = {e | e is an expression}
[[b]] = {e | e→∗ bv}
[[Πx:τ1.τ2]] = {λx.e | ∀e′, e′ ∈ [[τ1]] =⇒ e1[e′/x] ∈ [[τ2]]}

T � P ~e iff P ~e ∈ ε(T)
T � start(I, c, U) iff thread I has c as the active

computation with an empty stack
at time U on T

T � ∀x:τ.ϕ iff ∀e, e ∈ [[τ]] implies T � ϕ[e/x]
T � ∃x:τ.ϕ iff ∃e, e ∈ [[τ]] and T � ϕ[e/x]

E. Lemmas
Lemma 5 (RINV is downward-closure).

1. If (k, c) ∈ RV INV[[Φ]]T ;u then ∀j<k, (j, c) ∈ RV INV[[Φ]]T ;u

2. If (k, c) ∈ RE INV[[Φ]]θ,T ;u then ∀j<k, (j, c) ∈ RE INV[[Φ]]T ;u

3. If (k, c) ∈ RCINV[[Φ]]T ;u then ∀j<k, (j, c) ∈ RCINV[[Φ]]T ;u

Proof (sketch): By examining the definition of the relations.

Lemma 6 (RINV is closed under delay).

1. If (k, e) ∈ RV INV[[Φ]]T ;u then ∀u′>u, (k, e) ∈ RV INV[[Φ]]T ;u′

2. If (k, e) ∈ RE INV[[Φ]]T ;u then ∀u′>u, (k, e) ∈ RE INV[[Φ]]T ;u′

3. If (k, e) ∈ RCINV[[Φ]]T ;u then ∀u′>u, (k, e) ∈ RCINV[[Φ]]T ;u′

Proof (sketch): By examining the definitions.

Lemma 7 (Indexed types are confined). confine (τ) (ub.ue.i.ϕ)
implies

1. RV(ub.ue.i.ϕ)[[τ]]θ;T ;u = RV INV[[ub.ue.i.ϕ]]θ;T ;u.
2. RE(ub.ue.i.ϕ)[[τ]]θ;T ;u = RE INV[[ub.ue.i.ϕ]]T ;u.
3. for all n, c, (∀uB , uE , I s.t. u ≤ uB ≤ uE , (n, c) ∈
RC(ub.ue.i.ϕ)[[τ.ϕ[uB , uE , I/ub, ue, i]]]θ;T ;uB ,uE ,I

∩RC(ub.ue.i.ϕ)[[ϕ[uB , uE , I/ub, ue, i]]]θ;T ;uB ,uE ,I)
iff (n, c) ∈ RCINV[[ub.ue.i.ϕ]]T ;u

Proof. By induction on τ . 2 uses 1 directly, 1 uses 2 when τ is
smaller, 3 uses 2 directly, and 1 uses 3 when τ is smaller.
Proof of 1.

case: τ = b. Follows directly from the definitions
case: τ = Πx : τ1.τ2

By assumptions
confine (τ1) (ub.ue.i.ϕ) and confine (τ1) (ub.ue.i.ϕ) (1)

Assume
(n, nf) ∈ RV(ub.ue.i.ϕ)[[Πx : τ1.τ2]]θ;T ;u (2)

To show: (n, nf) ∈ RV INV[[ub.ue.i.ϕ]]T ;u

We first consider the case when nf = λx.e1

Given 0 ≤ j < n, u′ ≥ u (j, e′) ∈ RE INV[[ub.ue.i.ϕ]]T ;u′

By I.H. on τ1
(j, e′) ∈ RE(ub.ue.i.ϕ)[[τ1]]θ;T ;u′

By (2)
(j, e1[e′/x]) ∈ RE(ub.ue.i.ϕ)[[τ2[e′/x]]]θ;T ;u′ (3)

By I.H. on τ2 and (3)
(j, e1[e′/x]) ∈ RE INV[[ub.ue.i.ϕ]]T ;u′ (4)

By (4)
(n, λx.e1) ∈ RV INV[[ub.ue.i.ϕ]]T ;u

Next we consider the case where nf = ΛX.e1 or comp(c)
this follows from the definition directly

Proofs for the other direction is similar

case: τ = comp(ub.ue.i.(x:τ.ϕ, ϕ))

By assumption
confine (τ) (ub.ue.i.ϕ) (1)

Assume
(n, nf) ∈ RV(ub.ue.i.ϕ)[[comp(ub.ue.i.(x:τ.ϕ, ϕ))]]θ;T ;u (2)

To show (n, nf) ∈ RV INV[[ub.ue.i.ϕ]]T ;u

We show the case when nf = comp(c), the other cases are trivial
By definitions, ∀uB , uE , ι, u ≤ uB ≤ uE ,
let γ = [uB , uE , ι/ub, ue, i]

(n, c) ∈RC(ub.ue.i.ϕ)[[x:τγ.ϕ1γ]]θ;T ;uB ,uE ,ι

∩RC()[[ϕ2γ]]θ;T ;uB ,uE ,ι (3)
By I.H. and (3)

(n, c) ∈ RCINV[[ub.ue.i.ϕ]]T ;u (4)
By (4)

(n, nf) ∈ RV INV[[ub.ue.i.ϕ]]T ;u (5)
The proof of the other direction is similar

3 is proven straightforwardly by expanding the definitions of the
two relations.

Lemma 8 (Invariant confinement).
ϕ is composable, and thread ι is silent between time uB and uE

implies T � ϕ[uB , uE , ι/ub, ue, i]

1. If fa(e) = ∅, fv(e) ∈ dom(γ), (n, γ) ∈ RE INV[[ub.ue.i.ϕ]]T ;u

then (n, eγ) ∈ RE INV[[ub.ue.i.ϕ]]T ;u

2. If fa(c) = ∅, fv(c) ∈ dom(γ), (n, γ) ∈ RE INV[[ub.ue.i.ϕ]]T ;u

then (n, cγ) ∈ RCINV[[ub.ue.i.ϕ]]T ;u

19 2014/7/22

3. If fa(c) = ∅, fv(fixf(x).c) ∈ dom(γ),
(n, γ) ∈ RE INV[[ub.ue.i.ϕ]]T ;u

then (n, fixf(x).cγ) ∈ RF INV[[ub.ue.i.ϕ]]T ;u

Proof. By induction on the structure of the terms. 3 needs a sub-
induction on n. We show a few key cases.
Proof of 1.

case: e = e1 e2

By I.H.
(n, e1γ) ∈ RE INV[[ub.ue.i.ϕ]]T ;u (1)
(n, e2γ) ∈ RE INV[[ub.ue.i.ϕ]]T ;u (2)

Assume (e1e2)γ →m nf 9
e1γ →j nf1 9 (3)

We consider two cases: nf1 = λx.e and nf1 6= λx.e
Subcase nf1 = λx.e:
By (1)

(n− j, λx.e) ∈ RV INV[[ub.ue.i.ϕ]]T ;u (4)
By (2) and Lemma 5

(n− j − 1, e2γ) ∈ RE INV[[ub.ue.i.ϕ]]T ;u (5)
By (4) and (5)

(n− j − 1, e[e2γ/x]) ∈ RE INV[[ub.ue.i.ϕ]]T ;u (6)
By (6)

(n, (e1e2)γ) ∈ RE INV[[ub.ue.i.ϕ]]T ;u (7)
Subcase nf1 6= λx.e:

(e1e2)γ →m nf1(e2γ) 9 (8)
By definitions

(n, (e1e2)γ) ∈ RE INV[[ub.ue.i.ϕ]]T ;u (9)

Proof of 3 is by sub-induction on n

case: n = 0
The fixpoint couldn’t have returned. We only need to show that
the trace satisfies ϕ. This is true because the thread executing
the fixpoint is silent.

case: n = k + 1

Assume that (k, fixf(x).cγ) ∈ RF INV[[ub.ue.i.ϕ]]T ;u (1)
To show (k + 1, fixf(x).cγ) ∈ RF INV[[ub.ue.i.ϕ]]T ;u

∀e, (k + 1, e) ∈ RE INV[[ub.ue.i.ϕ]]T ;u

To show (k + 1, c e) ∈ RCINV[[ub.ue.i.ϕ]]T ;u

By (1),
(k, λz.comp((fixf(x).cγ) z)) ∈ RE INV[[ub.ue.i.ϕ]]T ;u (2)

By I.H. on c and Lemma 5 and 6
(k, c[λz.comp((fixf(x).cγ) z)/f][e/x])
∈ RCINV[[ub.ue.i.ϕ]]T ;u (3)

Assume thread ι executes the fixpoint,
we consider the following time intervals:
(i)Before the fixpoint is unrolled,
(ii) the body of the fixpoint is evaluated,
(iii) the fixpoint returns e1

By ι is silent in (i)
ϕ holds in (i) (4)

By (3) and ϕ is composable,
ϕ holds in (ii) and (iii)
and (je, e1) ∈ RE INV[[ub.ue.i.ϕ]]T ;uE

where ue is the time when e1 is returned
and je is the length of T from ue till the end of T (5)

By (4) and (5)
(k + 1, fixf(x).cγ) ∈ RF INV[[ub.ue.i.ϕ]]T ;u

F. Properties of Interpretation of Types
Lemma 9. If nf 6= λx.e or ΛX.e or comp(c), then (n, nf) ∈
RV(Φ)[[τ]]θ;T ;u

Proof (sketch): Case on τ . For all cases except when τ = X , the
conclusion follows from the definition ofRV INV[[Φ]]T ;u.

When τ = X , θ(X) ∈ Type. By the definition of Type,
every C ∈ Type contains all stuck terms that are not functions
or suspended computations.

Lemma 10 (Substitution). If C = RV(Φ)[[τ1]]θ;T ;u then

1. RV(Φ)[[τ]]θ[X 7→C];T ;u = RV(Φ)[[τ [τ1/X]]]θ;T ;u

2. RE(Φ)[[τ]]θ[X 7→C];T ;u = RE(Φ)[[τ [τ1/X]]]θ;T ;u

3. RC(Φ)[[η]]θ[X 7→C],T ,Ξ = RC(Φ)[[η[τ1/X]]]θ,T ,Ξ
4. RA(Φ)[[α]]θ[X 7→C];T ;u = RA(Φ)[[α[τ1/X]]]θ;T ;u

Proof (sketch): By induction on the structure of τ , η,ϕ and α.

Lemma 11 (Downward-closure).

1. If (k, c) ∈ RC(Φ)[[η]]θ,T ,Ξ then ∀j<k, (j, c) ∈ RC(Φ)[[η]]θ,T ,Ξ
2. If ftv(τ) ⊆ dom(θ), ∀X ∈ dom(θ), θ(X) ∈ Type, and

(k, e) ∈ RV(Φ)[[τ]]θ;T ;u, then ∀j<k, (j, e) ∈ RV(Φ)[[τ]]θ;T ;u.
3. If ftv(τ) ⊆ dom(θ), ∀X ∈ dom(θ), θ(X) ∈ Type, and

(k, e) ∈ RE(Φ)[[τ]]θ;T ;u, then ∀j<k, (j, e) ∈ RE(Φ)[[τ]]θ;T ;u.
Proof (sketch): By examining the definitions. Proofs of 3 uses
proofs of 2 and 2 uses 1.

Lemma 12 (Substitutions are closed under index reduction).
If ftv(Γ) ⊆ dom(θ), ∀X ∈ dom(θ), θ(X) ∈ Type, (n, γ) ∈
RG(Φ)[[Γ]]θ;T ;u, and j < n then (j, γ) ∈ RG(Φ)[[Γ]]θ;T ;u.
Proof (sketch): By induction on the structure of Γ, using Lemma 11.

Lemma 13 (Validity of types). If ftv(τ) ⊆ dom(θ) and ∀X ∈
dom(θ), θ(X) ∈ Type, thenRV(Φ)[[τ]]θ;T ;u ∈ Type
Proof (sketch): By Lemmas 11.

Lemma 14 (Closed under delay).

1. If (k, e) ∈ RV(Φ)[[τ]]θ;T ;u and u′ > u then (k, e) ∈
RV(Φ)[[τ]]θ;T ;u′ .

2. If (k, e) ∈ RE(Φ)[[τ]]θ;T ;u and u′ > u then (k, e) ∈
RE(Φ)[[τ]]θ;T ;u′ .

Proof (sketch): By examining the definitions and use Lemma 6

Lemma 15 (Substitutions are closed under delay). If (n, γ) ∈
RG[[Γ]]θ;T ;uΦ and u′ > u then (n, γ) ∈ RG[[Γ]]θ;T ;u′Φ.
Proof (sketch): By induction on the structure of Γ, using Lemma 14.

G. Soundness
Theorem 16 (Soundness). Assume that ∀A :: α ∈ Σ, ∀Φ, T , n, u, (n,A) ∈
RA(Φ)[[α]]·;T ;u, then
1. (a) • E :: u : b; Θ; Σ; ΓL; Γ; ∆ `Φ e : τ ,

• ∀θ ∈ RT [[Θ]],
• ∀γL ∈ [[ΓL]],
• ∀U,U ′, U ′ ≥ U , let γu = [U/u],
• ∀T , ∀n, γ, (n; γ) ∈ RG(Φ)[[Γγuγ

L]]θ;T ;U′ ,
• T � ∆γγuγ

L

implies (n; eγ) ∈ RE(Φ)[[τγγuγ
L]]θ;T ;U′

(b) • E :: u1, u2, i; Θ; Σ; ΓL; Γ; ∆ `Φ c : η,
• ∀ u, uB , uE , ι s.t. u ≤ uB ≤ uE , let γ1 = [uB , uE , ι/u1, u2, i]
• ∀θ ∈ RT [[Θ]],
• ∀γL ∈ [[ΓL]],
• ∀T , ∀n, γ, (n; γ) ∈ RG(Φ)[[Γγ1γ

L]]θ;T ;u,
• T � ∆γγ1γ

L

implies (n; cγ) ∈ RC(Φ)[[ηγγ1γ
L]]θ;T ;uB ,uE ,ι

20 2014/7/22

(c) • E :: u : b; Θ; Σ; ΓL; Γ; ∆ `Φ c : ηc,
• ∀θ ∈ RT [[Θ]],
• ∀γL ∈ [[ΓL]],
• ∀U,U ′, U ′ ≥ U , let γu = [U/u],
• ∀T , ∀n, γ, (n; γ) ∈ RG(Φ)[[Γγuγ

L]]θ;T ;U′ ,
• T � ∆γγuγ

L

implies (n; cγ) ∈ RF(Φ)[[ηcγγuγ
L]]θ;T ;U′

(d) • E :: u : b; Θ; Σ; ΓL; Γ; ∆ `Φ a : α,
• ∀θ ∈ RT [[Θ]],
• ∀γL ∈ [[ΓL]],
• ∀U,U ′, U ′ ≥ U , let γu = [U/u],
• ∀T , ∀n, γ, (n; γ) ∈ RG(Φ)[[Γγuγ

L]]θ;T ;U′ ,
• T � ∆γγuγ

L

implies (n; aγ) ∈ RA(Φ)[[αγγuγ
L]]θ;T ;U′

2. (a) • E :: u : b; Θ; Σ; ΓL; Γ; ∆ ` e : τ ,
• ∀θ ∈ RT [[Θ]],
• ∀γL ∈ [[ΓL]],
• ∀U,U ′, U ′ ≥ U , let γu = [U/u],
• ∀T , ∀Φ, ∀n, γ, (n; γ) ∈ RG(Φ)[[Γγuγ

L]]θ;T ;U′ ,
• T � ∆γγuγ

L

implies (n; eγ) ∈ RE(Φ)[[τγγuγ
L]]θ;T ;U′

(b) • E :: u1, u2, i; Θ; Σ; ΓL; Γ; ∆ ` c : η,
• ∀ u, uB , uE , ι s.t. u ≤ uB ≤ uE , let γ1 = [uB , uE , ι/u1, u2, i]
• ∀θ ∈ RT [[Θ]],
• ∀γL ∈ [[ΓL]],
• ∀T , ∀Φ, ∀n, γ, (n; γ) ∈ RG(Φ)[[Γγ1γ

L]]θ;T ;u,
• T � ∆γγ1γ

L

implies (n; cγ) ∈ RC(Φ)[[ηγγ1γ
L]]θ;T ;uB ,uE ,ι

(c) • E :: u : b; Θ; Σ; ΓL; Γ; ∆ ` c : ηc,
• ∀θ ∈ RT [[Θ]],
• ∀γL ∈ [[ΓL]],
• ∀U,U ′, U ′ ≥ U , let γu = [U/u],
• ∀T , ∀Φ, ∀n, γ, (n; γ) ∈ RG(Φ)[[Γγuγ

L]]θ;T ;U′ ,
• T � ∆γγuγ

L

implies (n; cγ) ∈ RF(Φ)[[ηcγγuγ
L]]θ;T ;U′

(d) • E :: u : b; Θ; Σ; ΓL; Γ; ∆ ` a : α,
• ∀θ ∈ RT [[Θ]],
• ∀γL ∈ [[ΓL]],
• ∀U,U ′, U ′ ≥ U , let γu = [U/u],
• ∀T , ∀Φ, ∀n, γ, (n; γ) ∈ RG(Φ)[[Γγuγ

L]]θ;T ;U′ ,
• T � ∆γγuγ

L

implies (n; aγ) ∈ RA(Φ)[[αγγuγ
L]]θ;T ;U′

(e) • E :: u1, u2, i; Θ; Σ; ΓL; Γ; ∆ ` ϕ silent,
• ∀ u, uB , uE , ι s.t. u ≤ uB ≤ uE ,
• let γ1 = [uB , uE , ι/u1, u2, i]
• ∀θ ∈ RT [[Θ]],
• ∀γL ∈ [[ΓL]],
• ∀Φ, ∀T , ∀n, γ, (n; γ) ∈ RG(Φ)[[Γγ1γ

L]]θ;T ;u,
• jb is the length of T from time uB to the end of T ,
• je is the length of T from time uE to the end of T ,
• n ≥ jb ≥ je
• between time uB and time uE , thread ι is silent
• T � ∆γγ1

implies T � (ϕγγ1)
(f) • E :: Θ; Σ; ΓL; Γ; ∆ ` ϕ true,

• ∀θ ∈ RT [[Θ]],
• ∀γL ∈ [[ΓL]],
• ∀T , ∀Φ, ∀n, γ, u, (n; γ) ∈ RG(Φ)[[ΓγL]]θ;T ;u,
• T � ∆γLγ

implies T � ϕγLγ

Proof. By induction on the structure of E .
Proof of 1.(a).

case: CONFINE

ϕ is trace composable
E ′ :: ub, ue, i; Θ; Σ; ΓL, u; Γ; ∆ ` ϕ silent
ub:b, ue:b, i:b ` ϕ ok fa(e) = ∅ fv(e) ⊆ Γ
confine (τ) (ub.ue.i.ϕ) confine (Γ) (ub.ue.i.ϕ)

u; Θ; Σ; ΓL; Γ; ∆ `ub.ue.i.ϕ e : τ
CONFINE

By assumptions
θ ∈ RT [[Θ]], ∀γL ∈ [[ΓL]],
γu = U/u, U ′ ≥ U , T � ∆γγuγ

L

and (n; γ) ∈ RG(ub.ue.i.ϕ)[[Γγuγ
L]]θ;T ;U′ , (1)

By Lemma 7 and (1)
and (n; γ) ∈ RE INV[[Φ]]T ;U′ (2)

By I.H. on E ′, given any ι, uB , and uE ,
ι is silent between uB and uE implies
T � ϕ[uB , uE , ι/ub, ue, i] (3)

By (1) and (3) and Lemma 8
(n, eγ) ∈ RE INV[[ub.ue.i.ϕ]]T ;U′ (4)

By (4) and Lemma 7
(n; eγ) ∈ RE(ub.ue.i.ϕ)[[τγuγ

L]]θ;T ;U′ (5)

Proof of 2.(a).

case:

E ′ :: Θ; Σ; ΓL, u,Γ ` τ1 ok

u; Θ; Σ; ΓL; Γ, x : τ1; ∆ ` e : τ2

u; Θ; Σ; ΓL; Γ; ∆ ` λx.e : Πx:τ1.τ2
E-FUN

By assumptions
θ ∈ RT [[Θ]], ∀γL ∈ [[ΓL]],
γu = U/u, U ′ ≥ U , T � ∆γγuγ

L

and (n; γ) ∈ RG(Φ)[[Γγuγ
L]]θ;T ;U′ , (1)

Given j < k, u′′ ≥ U ′,
and (j, e0) ∈ RE(Φ)[[τ1γγuγ

L]]θ;T ;u′′ (2)
By Lemma 12 and 15

(j; γ) ∈ RG(Φ)[[Γγuγ
L]]θ;T ;u′′ (3)

By (2) and (3)
(j; γ[x 7→ e0]) ∈ RG(Φ)[[(Γ, x : τ1)γuγ

L]]θ;T ;u′′ , (4)
By I.H. on E ′

(j, eγ[x 7→ e0]) ∈ RE(Φ)[[τ2γuγ
Lγ[x 7→ e0]]]θ;T ;u′′ (5)

By (5) is derived based on assumption in (2)
(n, λx.eγ) ∈ RV(Φ)[[(Πx:τ1.τ2)γγuγ

L]]θ;T ;U′ (6)
By (6)

(n, λx.eγ) ∈ RE(Φ)[[(Πx:τ1.τ2)γγuγ
L]]θ;T ;U′

case:

E1 :: u; Θ; Σ; ΓL; Γ; ∆ ` e1 : Πx:τ1.τ2
E2 :: u; Θ; Σ; ΓL; Γ; ∆ ` e2 : τ1

u; Θ; Σ; ΓL; Γ; ∆ ` e1 e2 : τ2[e2/x]
E-APP

By assumptions
θ ∈ RT [[Θ]], γL ∈ [[ΓL]],
γu = U/u, U ′ ≥ U , T � ∆γγuγ

L

and (n; γ) ∈ RG(Φ)[[Γγuγ
L]]θ;T ;U′ , (1)

By I.H. on E2
(n, e2γ) ∈ RE(Φ)[[τ1γγuγ

L]]θ;T ;U′ (2)
By I.H. on E1

(n, e1γ) ∈ RE(Φ)[[(Πx:τ1.τ2)γγuγ
L]]θ;T ;U′ (3)

Assume (e1 e2)γ →m
β nf 9

By (3),
(e1 e2)γ →∗β nf1(e2γ),
and (n−m, nf1) ∈ RV(Φ)[[(Πx:τ1.τ2)γγuγ

L]]θ;T ;U′ (4)
We consider two cases:
subcase 1: nf1 = λx.e′1
By (4)

21 2014/7/22

(n−m−1, e′1[e2γ/x]) ∈ RE(Φ)[[τ2γγuγ
L[e2γ/x]]]θ;T ;U′ (5)

By (4) and (5)
(n, (e1e2)γ) ∈ RE(Φ)[[(τ2[e2/x])γγuγ

L]]θ;T ;U′ (6)
subcase 2: nf1 6= λx.e′1
By Lemma 9

(n−m, nf1(e2γ)) ∈ RV(Φ)[[τ2γγuγ
L[e2γ/x]]]θ;T ;U′ (8)

By (8)
(n, (e1e2)γ) ∈ RE(Φ)[[(τ2[e2/x])γγuγ

L]]θ;T ;U′ (9)

Proof of 2.(c)

case: FIX

Proof of 2.(b)

case: SEQC
E1 :: u0, u1, i; Θ; Σ; ΓL;u3,Γ; ∆, u0 ≤ u1 ` ϕ0 silent

E2 :: u1, u2, i; Θ; Σ; ΓL, u0 : b, u3; Γ; ∆, u1 ≤ u2, ϕ0

` c1 : x:τ.ϕ1

E3 :: u2, u3, i; Θ; Σ; ΓL, u0, u1; Γ, x : τ ; ∆, u2 ≤ u3, ϕ0, ϕ1

` c2 : y:τ ′.ϕ2

E4 :: Θ; Σ; ΓL, u1, u2, u0, u3, i; Γ, x:τ, y : τ ′; ∆
` (ϕ0 ∧ ϕ1 ∧ ϕ2)⇒ ϕ true

Θ; Σ; ΓL, u0, u3, i; Γ, y : τ ′ ` ϕ ok
fv(letc(c1, x.c2)) ⊆ dom(Γ)

u0, u3, i; Θ; Σ; ΓL; Γ; ∆ ` letc(c1, x.c2) : y:τ ′.ϕ

By assumption
Pick time points u, uB , uE and thread id ι, s.t. u ≤ uB ≤ uE ,
let γ1 = [uB , uE , ι/u0, u3, i]
Pick any trace T , such that T � ∆γLγγ1

θ ∈ RT [[Θ]], γL ∈ [[ΓL]],
(n; γ) ∈ RG(Φ)[[Γγuγ

L]]θ;T ;U′ , (1)
the length of the trace from time uB to the end of T is jb
the length of the trace from time uE to the end of T is je
and n ≥ jb ≥ je (2)
the configuration at time uB is
uB−−→ σb . · · · , 〈ι; y.c :: K; lete(e1, x.c2)γ〉 · · ·

the configuration at time uE is
uE−−→ σe . · · · , 〈ι;K; c[e/y]〉 · · ·

and between uB and uE (inclusive), the stack of thread ι
always contains prefix y.c :: K (3)

By the operational semantics
exists um1, um2, s.t. uB≤um1≤um2≤ue
the configuration at time um1 is
um1−−−→ σm1 . · · · , 〈ι;x.c2γ :: y.c :: K; c1γ〉 · · · ,

the configuration at time um2 is
um2−−−→ σm2 . · · · , 〈ι; y.c :: K; c2γ[e0/x]〉 · · · , (4)

By (4)
between time uB and um1, thread ι is silent (5)

By (1),
T � (∆γLγγ1, (u0 ≤ u1)γ1[um1/u1]) (6)

By (1)
(jm1, γ) ∈ RG(Φ)[[ΓγL[uE/u3][uB , um1, ι/u0, u1, i]]]θ;T ;u, (7)

By I.H. on E1 and (5), (6) and (7)
T � ϕ0γγ

Lγ1[um1/u1] (8)
Let γ2 = γγLγ1[um1/u1]
By (1) and Lemma 15 and u ≤ um1

(jm1; γ) ∈ RG(Φ)[[Γ[uB , um1, um2, uE , ι/u0, u1, u2, u3, i]]]θ;T ;um1 (9)
Let γ3 = [um1, um2, ι/ub, ue, j],
By I.H. on E2 and (6), (8), (9)

(n, c1γ) ∈ RC(Φ)[[(x:τ.ϕ1)γ2γ3]]θ;T ;um1;um2;ι (10)
By (10),
let jm2 be the length of the trace from time um2 to the end of T

(jm2, e0) ∈ RE(Φ)[[τγ2γ3]]θ;T ;um2 and
T � ϕ1γ2γ3[e0/x] (11)

By Lemma 12 and jm2 < n
let γ4 = γγL[uB , uE , ι/u0, u3, i][um1, um2/u1, u2][e0/x],

(jm2, gamma[e0/x])
∈ RG(Φ)[[(Γ, x:τ)γ4)[um2, uE , ι/u2, u3, i]]]θ;T ;um2 (12)

By I.H. on E3, (11), (12)
(jm2, c2γ[e0/x]) ∈ RC(Φ)[[(y:τ ′.ϕ2)γ4]]θ;T ;um2,uE ,ι (13)

By (14)
(je, e) ∈ RE(Φ)[[τ ′γ4]]θ;T ;uE and
T � ϕ2γ4[e/y] (14)

By I.H. on E4
T � (ϕ0 ∧ ϕ1γeϕ2[e/y])γ4 ⇒ ϕγ4[e/y] (15)
T � ϕγ4[e/y] (16)

By (14) (15)
(n, lete(c1, x.c2)γ) ∈ RC(Φ)[[(y : τ ′.ϕ)γLγγ1]]θ;T ;uB ,uE ,ι

case: SEQCCOMP

Proof of 2.(f)

case: HONEST
E1 :: u1, u2, i; Θ; Σ; ΓL; ·; ∆ ` c : ϕ

E2 :: Θ; Σ; ΓL; ·; ∆ ` start(I, c, u) true

Θ; Σ ` ΓL,Γ ok

Θ; Σ; ΓL; Γ; ∆ ` ∀u′:b.(u′>u)⇒ ϕ[u, u′, I/u1, u2, i] true

By assumptions
θ ∈ RT [[Θ]], γL ∈ [[ΓL]],
T � ∆γL (1)

To show T �θ (∀u′.(u′ > u)⇒ ϕ[u, u′, I/u1, u2, i])γγ
L

By I.H. on E2
T �θ start(I, c, u)γL (2)

By (2)
at time uγL, thread IγL starts to evaluate c on an empty stack, (3)

Given any time U ′ > uγL, and k such that the length of T
after uγL is no less than k
By I.H. on E1

(k, c) ∈ RC(Φ)[[ϕγ[uγ, U ′, Iγ/u1, u2, i]]]θ;T ;uγ,U′,Iγ (4)
because c starts from an empty stack,
c couldn’t have returned at time U ′, (5)
By (4) (5) and (1) and the definition ofRC,
T �θ ϕγL[uγ, U ′, Iγ/u1, u2, i] (7)

case: ∀I
E ′ :: Θ; Σ; ΓL, x : τ ; Γ; ∆ ` ϕ true

Θ; Σ; ΓL; Γ; ∆ ` ∀x:τ.ϕ true

By assumptions
θ ∈ RT [[Θ]], γL ∈ [[ΓL]], T � ∆γγL

and (n; γ) ∈ RG(Φ)[[ΓγL]]θ;T ;u, (1)
Given any e such that e ∈ [[τ]]
γL[e/x] ∈ [[ΓL, x : τ]] (2)

By I.H. on E ′
T � ϕγL[e/x]γ (3)

By definitions
T � (∀x:τ.ϕ)γLγ

22 2014/7/22

H. Proof of State Integrity for Memoir
We prove the correctness of a TPM based state continuity mecha-
nism that closely follows Memoir [28].

Figure 12 contains our model for the Memoir system.

Abbreviations and Definitions
Figure 13 summarizes the abbreviations we use.

Abbreviations

(ϕ ∧ ψ)@u = (ϕ@u) ∧ (ψ@u)
(ϕ ∨ ψ)@u = (ϕ@u) ∨ (ψ@u)
(ϕ⇒ ψ)@u = (ϕ@u)⇒ (ψ@u)
(¬ϕ)@u = ¬(ϕ@u)
>@u = >
⊥@u = ⊥

(∀x.ϕ)@u = ∀x. (ϕ@u)
(∃x.ϕ)@u = ∃x. (ϕ@u)
(ϕ@u′)@u = ϕ@u′

ϕ ◦ (u1, u2) = ∀u. (u1 < u < u2)⇒ (ϕ@u)
ϕ ◦ (u1, u2] = ∀u. (u1 < u ≤ u2)⇒ (ϕ@u)
ϕ ◦ [u1, u2) = ∀u. (u1 ≤ u < u2)⇒ (ϕ@u)
ϕ ◦ [u1, u2] = ∀u. (u1 ≤ u ≤ u2)⇒ (ϕ@u)

Figure 13. Abbreviations

Axioms
We list the axioms we use in Figure 14.

Definitions

LL(u1, u2, e, j) = LLenter(e, j)@u1 ∧ ¬LLexit(j) ◦ [u1, u2)
∧ LLexit(j)@u2

InLLSess(u, e, j) = ∃u1.(u1 ≤ u) ∧ LLenter(e, j)@u1

∧ ¬LLexit(j) ◦ [u1, u)
InSomeLLSess(u, e) = ∃j.InLLSess(u, e, j)
LLThread(j, e) = ∃u.LLenter(e, j)@u
PCRPrefix(p, s hash) = ∃h. val pcr(pcr17, h) ∧ hash prefix(h, s hash)
ExitsPCRProtected(i, u, s hash) = LLexit(i)@u⇒

¬PCRPrefix(pcr17, s hash)@u

Axioms

(LLChain) LLChain(hash chain(−1, code hash(e), ...), e)
(LLExit) ∀s hash, u2, e

LLChain(s hash, e)⇒
∧ val pcr(pcr17, s hash)@u2

∧ ¬InLLSess(u2, e)⇒
∃j, u3.

LLThread(j, e)
∧ LLexit(j)@u3

∧ val pcr(pcr17, h)@u3

∧ hash prefix(h, s hash)
∧ ∀u4 ∈ (u1, u3).

val pcr(pcr17, s hash)@u⇒ InLLSess(u, e)
(PCRInit) val pcr(p, 0)@−∞
(LLHonest) LLEnter(i, e)@u⇒ ∃e′. start(−∞, e e′, i)

Th next two axiom schemas holds for any action a(i, t)
(LLAct1) a(i, t)@u ∧ InSomeLLSess(u, e)⇒ InLLSess(u, e, i)
(LLAct2) a(i, t)@u ∧ LLThread(i, e)⇒ InLLSess(u, e, i)

Figure 14. Definitions and Model-specific axioms about Late
Launch

H.1 Proof
The proof proceeds in four stages. Each step employs the rely-
guarantee technique to prove a particular invariant about executions

of the system. At a high level, the four stages of the proof are as
follows:

1. PCR Protection: We show that the value of pcr17 contains a
certain measurement h only during late launch sessions running
MemoirLib (runmodule).

2. NVRAM Protection: We show that after the permissions on a
location in the NVRAM has been set to h, then the permissions
on that location is never changed.

3. Key Secrecy: We show that if the key corresponding to the ser-
vice is available to a thread, then it must have either generated
it or read it from the NVRAM.

4. History Summary-State Correspondence: We show that if on
any two executions of the service, if the history summaries are
equal then the states must also be equal.

Finally, from these, we prove the overall state continuity prop-
erty for Memoir.

PCR Protection. Consider an arbitrary service s. Let s hash =
hash chain(−1, code hash(runmodule), code hash(s)). We
show that if the value of pcr17 at time u is s hash, then it must
be the case that we are in a late launch session at time u. Formally,
we show that,

∀u.val pcr(pcr17, s hash)@u⇒ InLLSess(u, runmodule)
(1)

To prove 1, we use rely-guarantee reasoning in the style of [14].
To prove an invariant ϕ(u), using rely guarantee reasoning, it is
sufficient to show for a choice of ψ(i, u) and ι(i) that

(1) ϕ(−∞)

(2) ∀i, u. (ι(i) ∧ ∀u′ < u. ϕ(u′))⇒ ψ(u, i)

(3)
(ϕ(u1) ∧ ¬ϕ(u2) ∧ (u1 < u2))⇒
∃i, u3. (u1 < u3 ≤ u2) ∧ ι(i) ∧ ¬ψ(u3, i) ∧

∀u4 ∈ (u1, u3). ϕ(u4)

We choose ϕ,ψ and ι as below:

ϕ(u) = val pcr(pcr17, s hash)@u⇒ InLLSess(u, runmodule)
ψ(i, u) = ExitsPCRProtected(i, u, s hash)
ι(i) = LLThread(i, runmodule)

Condition (1) follows (PCRInit) and ¬hash prefix(0, s hash).
Condition (3) follows directly from axiom (LLExit). To prove con-
ditions (2) above, expanding out the definitions of ϕ, ι and ψ above,
we need to show that

∀i, u. (LLThread(i, runmodule)
∧ ∀u′ < u. (val pcr(pcr17, s hash)@u

⇒ InLLSess(u, runmodule)(u′))
⇒ ExitsPCRProtected(u, i)

(2)

This can be rewritten as

∀i. (LLThread(i, runmodule)
∧ ∀u. (∀u′ < u. (val pcr(pcr17, s hash)@u′

⇒ InLLSess(u′, runmodule))
⇒ ExitsPCRProtected(u, i))

(3)

Choose an arbitrary thread i such that LLThread(i, runmodule).
Therefore, we have by (LLHonest) that for some e′,
start(−∞, runmodulee′, i). To use rule HONEST to show (3), we
need to show that.

23 2014/7/22

1 runmodule =
2 let snapshot =
3 λ(state, summary, skey).
4 enc state← act(encrypt skey service state);
5 auth← act(mac skey (enc state, freshness tag));
6 ret(enc state, freshness tag, auth)
7

8 let check snapshot =
9 λ((enc state, freshness tag, auth), request, history, skey).
10 act(verify mac skey auth);
11 freshness tag′ ← act(hash (freshness tag||request));
12 if(freshness tag = history ∨ freshness tag′ = history, act(dec skey enc state), act(abort()))
13

14 let initialize =
15 λ(service,Nloc).
16 act(extend pcr(pcr17, code hash(service)));
17 act(verify pcr(hash chain(−1, codehash(runmodule), code hash(service))));
18 skey ← act(gen symkey());
19 let history summary = 0
20 act(setNVRAMlocPerms(Nloc, pcr17));
21 act(NVRAMwrite(Nloc, (history summary, skey));
22 act((extend pcr(pcr17, 0));
23 service state← (service ExtendPCR ResetPCR · · ·) INIT;
24 act(act(service init(skey, service, service state,Nloc)));
25 snap← snapshot(service state, history summary, skey);
26 ret((), snap)
27

28 let execute =
29 λ(service,Nloc, snap, req).
30 act(extend pcr(pcr17, code hash(service)));
31 (skey, history summary)← act(NVRAMread Nloc);
32 service state← check snapshot(snap, request, history summary, skey);
33 new summary ← act(hash (history summary||req));
34 act(NVRAMwrite(Nloc, (new summary, skey));
35 act(extend pcr(pcr17, 0));
36 act(service try(skey, service, service state,Nloc));
37 (new state, resp)← (service ExtendPCR ResetPCR · · ·) (EXEC(service state, req));
38 snap← snapshot(service state, history summary, skey);
39 act(act(service invoke(skey, service, service state, new state,Nloc)));
40 ret(resp, snap)
41

42 λ(service,Nloc, call).
43 (resp, snap)← (case call of
44 INIT⇒ initialize(service,Nloc)
45 | EXEC(snap, req)⇒ execute(service,Nloc, snap, req))
46 act(send(response, snap));
47 act(ll exit())

Figure 12. runmodule: A model of Memoir’s state isolation mechanism

` runmodule :
Π(s : any, l : ptr, snap : msg). cmp(ub, u, i.

(∀ub < u′ < u(val pcr(pcr17, s hash)@u′

⇒ InLLSess(u′, runmodule))
⇒ ExitsPCRProtected(u, i)))

(4)

The key step in typing runmodule is to type the execution of s
supplied by the adversary using the CONFINE rule. Essentially, we
need to show that the service cannot exit with the pcr17 containing
a prefix of s hash. The service is confined to the actions provided
by the TPM and we can show that each of them has the following
invariant:

f : cmp(ub, ue, i. ¬PCRPrefix(pcr17, s hash)@ub ⇒
∀u ∈ [ub, ue]. (InLLSession(u, runmodule, i)

⇒ ¬PCRPrefix(pcr17, s hash)@u)
(5)

Therefore, we can give s the same type. We have now shown
that by the end of service, the late launch session has either ter-
minated or the value of pcr17 is not a prefix of s hash. Using
(LLAct2), we can now show .

NVRAM Protection.

Axioms
We want to show that the permissions on the NVRAM are always
tied to the value of pcr17 being s hash:

24 2014/7/22

Axioms

(SetPerms) SetNVPerms(i, Nloc, p)@u ∧ val pcr(p, h)@u
⇒ NVPerms(Nloc, p, h)@u

(GetPerms) (SetNVPerms(i, Nloc, p′)@u∨
NVRead(i, Nloc, p′)@u∨
NVWrite(i, Nloc, p′)@u)

∧ NVPerms(Nloc, p, h)@u⇒ val pcr(p, h)@u
(NV Perms) NVPerms(Nloc, p, h)@u1 ∧ ¬NVPerms(Nloc, p, h)@u2

∧ (u1 < u2)⇒
∃u3, j.p′, h′. (u1 < u3 <= u2) ∧ val pcr(p′, h′)@u3

∧ SetNVPerms(j,Nloc, p′)@u3

∧ (p 6= p′ ∨ h 6= h′)
∧ ∀u4 ∈ (u1, u3). NVPerms(Nloc, p, h)@u4

Figure 15. Model-specific axioms about NVRAM

(SetNVPerms(i,Nloc, pcr17) ∧ val pcr(pcr17, s hash))@ui
⇒ ∀(u > ui). NVPerms(Nloc, pcr17, s hash)@u

(6)
Assume that for some time point ui.

SetNVPerms(i,Nloc, pcr17) ∧ val pcr(pcr17, s hash))@ui
(7)

We now need to show that

∀(u > ui)⇒ NVPerms(Nloc, pcr17, s hash)@u

Again, we prove this invariant by rely guarantee reasoning, where
we choose ϕ, ψ and ι to be the following.

ϕ(u) = NVPerms(Nloc, pcr17, s hash)@u
ψ(u, i) = (SetNVPerms(i, Nloc, p)

⇒ (p = pcr17) ∧ val pcr(pcr17, s hash))@u
ι(i) = LLThread(i, runmodule)

Expanding condition (1), we need to show the following

NVPerms(Nloc, pcr17, s hash)@ui

This holds by Axiom (SetPerms) and 7.
Expanding condition (2), choose i such that LLThread(i, runmodule).

We need to show that ∀u > ui.(∀u′ ∈ (ui, u). φ(u′))⇒ ψ(i, u)

` runmodule :
Π(s : any, l : ptr, snap : msg). cmp(ub, ue, i.

∀u ∈ (ub, ue]∀u′ ∈ [ui, u).
NVPerms(Nloc, pcr17, s hash)@u′ ⇒
SetNVPerms(i,Nloc, p)@u⇒
(p = pcr17) ∧ val pcr(pcr17, s hash)@u

(8)
Again, the key step in typing runmodule is to type the execu-

tion of s supplied by the adversary using the CONFINE rule. Essen-
tially, we show that the service is not allowed to set the permissions
of the Nloc at all.

f : cmp(ub, ue, i. ¬PCRPrefix(pcr17, s hash)@ub ⇒
∀u ∈ [ub, ue]. (InLLSession(u, runmodule, i)

⇒ ∀p. ¬SetNVRAMPerms(i,Nloc, p)@u)
(9)

Condition (3) follows from (NVPerms), (GetPerms) and 1.
In particular, we can show from 6 and (GetPerms).

(SetNVPerms(i,Nloc, pcr17) ∧ val pcr(pcr17, s hash))@ui
⇒ ∀(u > ui). ReadNV(I,Nloc)@u

⇒ val pcr(pcr17, s hash)@u
(10)

And by 1

Definitions

NVContains(Nloc, s) = ∃m.Contains(m, s) ∧ val NV(m, s)
Private(s,Nloc, u) = ∀u′ < u.(Send(i,m)@u⇒ ¬Contains(m, s)

∧ ∀Nloc′.(NVContains(Nloc, s)@u′ ⇒ (Nloc′ = Nloc))
KeepsPrivate(i, s,Nloc) = Send(i,m)⇒ ¬Contains(m, s)

∧ ∀Nloc′.(WriteNV(Nloc′,m) ∧ Contains(m, s)
⇒ Nloc = Nloc′)

NewInLL(s, e) = New(i, s)@u⇒ InLLSess(u, e, i)

Axioms

(Shared) LLChain(h, e)∧
NewInLL(s, e)∧
∀u > ui.NVPerms(Nloc, pcr17, h)⇒
∀u1, u2 ∈ (ui,∞]
Private(s,Nloc, u1) ∧ ¬Private(s,Nloc, u2)⇒
∃i, u3.(u1 < u3 <= u2)

(LLThread(i, e)
¬KeepsPrivate(i, s,Nloc)@u3)∧
∀u ∈ (u1, u3)Private(s,K, u))

(POS) (Private(s,Nloc, u) ∧ Has(i, s)@u⇒
(∃u′.(u′ < u) ∧ New(i, s)@u′)∨
(∃u′.(u′ < u) ∧ ReadNV(i, Nloc,m)@u′ ∧ Contains(m, s))

(PrivateInit) New(s)@u⇒ Private(s,Nloc, u)
(New3) New(i, n)@u ∧ New(i′, n)@u′ ⇒ (i = i′) ∧ (u = u′)

Assumption about about service init
(Init) service init(i, skey, service, state,Nloc)@ui ⇒

∃u.(u < ui) ∧ Start(i, runmodule service Nloc INIT)@u

Figure 16. Definitions and Model-specific axioms about Secrecy

(SetNVPerms(i,Nloc, pcr17) ∧ val pcr(pcr17, s hash))@ui
⇒ ∀(u > ui)⇒ ReadNV(I,Nloc)@u

⇒ InSomeLLSess(u, runmodule)
(11)

Therefore, by (LLAct), we have that

(SetNVPerms(i,Nloc, pcr17) ∧ val pcr(pcr17, s hash))@ui
⇒ ∀I, (u > ui)⇒ ReadNV(I,Nloc)@u

⇒ InLLSess(u, runmodule, I)
(12)

This means that whenever, a thread i reads from the Nloc at
time u, it must be the case that i is in a late launch session running
runmodule at time u.

Key Secrecy. We now show that after initialization, if any thread j
has the key corresponding to the service, then that thread must have
read it from Nloc or the thread is the initialization thread itself.

∀i, ui, state, skey,Nloc
service init(i, skey, state,Nloc)@ui ⇒
∀j, u > ui.Has(j, skey)@u⇒ (j = i)∨
∃u′,m.(ui < u′ < u) ∧ ReadNV(j,Nloc,m)@u′

∧ Contains(m, skey)

(13)

Fix Ii, ui, skey, service, Nloc.
Assume service init(Ii, skey, service, state,Nloc)@ui By (Init)
and (HON), we have

We assume that service has the following type:

(service ExtendPCR ResetPCR · · ·) : Πi : msg. cmp(ub, ue, i.
(x : msg.¬Contains(i, s)⇒ ¬Contains(x, s),
KeepsSecret(i, skey,Nloc) ◦ [ub, ue]))

(14)

25 2014/7/22

∃u1, u2, u3.(u1 < u2 < u3 < u4 < ui)
VerifyPCR(pcr17, s hash)@u1

New(skey)@u2∧
SetNVPerms(Ii, Nloc, pcr17)@u3∧
NVWrite(Ii, Nloc, (skey, h))@u4∧
¬SetNVPerms(Ii, Nloc, p) ◦ (u3, ui]∧
¬(Extend(Ii, pcr17, t)||Reset(Ii, pcr17)) ◦ (u1, u3]
¬Send(Ii,m) ◦ (u1, ui]

(15)
We prove this by another rely-guarantee proof, very similar to

the proof of Kerberos in [14]:

φ(u) = Private(skey,Nloc, u)
ψ(i, u) = KeepsPrivate(i, skey,Nloc)@u
I(i) = LLThread(i, runmodule)

Condition (1) holds From (15) and (LLAct)
To prove condition (2) we again use the HONEST rule. However,

the property required cannot be derived CONFINE. We assume that
the

The key step here is the typing of the execution of s

(s ExtendPCR ResetPCR · · ·) (EXEC(service state, req))

Here, we use the EQ rule As we know that s = service, from (14)
we can assign

(s ExtendPCR ResetPCR · · ·) : Πi : msg. cmp(ub, ue, i.
(x : msg.¬Contains(i, s)⇒ ¬Contains(x, s),
KeepsSecret(i, skey,Nloc) ◦ [ub, ue]))

(16)
Condition (3) Follows from (Shared), and (12).

State to History Summary Correspondence. We state without
proof an invariant that the history summary has a one-to-one cor-
respondence with the state. This is proved through an induction on
the history summary.

∀i, ui, state, skey,Nloc
service init(i, skey, state,Nloc,)@ui∧ ⇒
∀h, state, state′, j, j′u, u′.u > ui ∧ u′ > ui ⇒

mac(j, skey, (state, h))@u ∧mac(j′, skey, (state′, h))@u′ ⇒
(state = state′)

(17)

State Continuity The high level property we prove about Memoir
is as follows:

∀ui, state, state ′, skey, iinit, sinit
service init(iinit, skey, service, sinit)@ui ⇒
∀u > ui. service invoke(i, skey, state, state ′)@u⇒
∃j, u′ < u. ((∃s.service invoke(j, skey, s, state)@u′

∨ service try(j, skey, state)@u′

∨ service init(j, skey, state)@u′)
∧ (∀j′. ¬service invoke(j′, skey, · · ·) ◦ (u′, u]))

(18)
Fix an i, ui, state, skey,
Assume service init(iinit, skey, service, sinit)@ui
For some u > ui assume that service invoke(i, skey, state, state ′).

Therefore we have Has(j, skey)@u. By (13) we have that one
of the two hold

i = j∨
∃u′.ui < u′ < u.ReadNV(j,Nloc,m)@u′ ∧ Contains(m, skey)

(19)
We analyze each case:

• Case i = j:
We have from (Init) and service init(i, skey, service, sinit)
that

∃u.(u < ui) ∧ Start(i, runmodule service Nloc INIT)@u

With HONEST, we can show that service invoke does not occur
on i and we have a contradiction.
• Case ∃u′ ∈ (ui, u).ReadNV(j,Nloc,m)@u′∧Contains(m, skey):

In this case, by (12) We have that LLThread(j, runmodule)
Therefore, by HONEST

ReadNVRAM(j, (Nloc, h))@u′ (20)

By (NVRAMRead), we have that ∃u′′ < u such that

WriteNV(j′,Nloc,m)@u′′∧
∀j′′. ¬WriteNV(j′′.Nloc,m′) ◦ (u′′, u′]

(21)

Again, by (12): we have that

LLThread(j′, runmodule) (22)

WriteNV(j′,Nloc, (skey, h))@u′′ (23)
And by HONEST, we can derive that

mac(j′, skey, (ENCskey(state′, h)) (24)

Also, we have two cases from 20 and HONEST from the branch
at Line 12 of runmodule:

Case 1:

verifyMAC(j, skey, (ENCskey(state), h) (25)

From 25 and (MAC), we have

mac(j′′, skey, (ENCskey(state), h)) (26)

By (17) on (25) and (28), we have state′ = state We then
have from (24)

service invoke(j′, skey, s′, state)@u′

∨service init(j′, skey, service, state)@u′
(27)

Also, from , we have that ∀j′′. ¬service invoke(j′′, · · ·).

Case 2:

verifyMAC(j, skey, (ENCskey(state), h′) ∧ h = H(req||h′)
(28)

This case proceeds similarly to the previous.

26 2014/7/22

